BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 29566338)

  • 1. Galvanic Replacement-Driven Transformations of Atomically Intermixed Bimetallic Colloidal Nanocrystals: Effects of Compositional Stoichiometry and Structural Ordering.
    Li GG; Sun M; Villarreal E; Pandey S; Phillpot SR; Wang H
    Langmuir; 2018 Apr; 34(14):4340-4350. PubMed ID: 29566338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Galvanic replacement of intermetallic nanocrystals as a route toward complex heterostructures.
    Chen AN; Endres EJ; Ashberry HM; Bueno SLA; Chen Y; Skrabalak SE
    Nanoscale; 2021 Jan; 13(4):2618-2625. PubMed ID: 33491702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tweaking the Interplay among Galvanic Exchange, Oxidative Etching, and Seed-Mediated Deposition toward Architectural Control of Multimetallic Nanoelectrocatalysts.
    Li GG; Wang Z; Blom DA; Wang H
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23482-23494. PubMed ID: 31179681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifaceted Gold-Palladium Bimetallic Nanorods and Their Geometric, Compositional, and Catalytic Tunabilities.
    Sun L; Zhang Q; Li GG; Villarreal E; Fu X; Wang H
    ACS Nano; 2017 Mar; 11(3):3213-3228. PubMed ID: 28230971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled Dealloying of Alloy Nanoparticles toward Optimization of Electrocatalysis on Spongy Metallic Nanoframes.
    Li GG; Villarreal E; Zhang Q; Zheng T; Zhu JJ; Wang H
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23920-31. PubMed ID: 27557567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction stoichiometry directs the architecture of trimetallic nanostructures produced
    Kar N; McCoy M; Zhan X; Wolfe J; Wang Z; Skrabalak SE
    Nanoscale; 2023 Feb; 15(8):3749-3756. PubMed ID: 36645383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seeding a New Kind of Garden: Synthesis of Architecturally Defined Multimetallic Nanostructures by Seed-Mediated Co-Reduction.
    Weiner RG; Kunz MR; Skrabalak SE
    Acc Chem Res; 2015 Oct; 48(10):2688-95. PubMed ID: 26339803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of atomically ordered AuCu and AuCu(3) nanocrystals from bimetallic nanoparticle precursors.
    Sra AK; Schaak RE
    J Am Chem Soc; 2004 Jun; 126(21):6667-72. PubMed ID: 15161294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications.
    da Silva AGM; Rodrigues TS; Haigh SJ; Camargo PHC
    Chem Commun (Camb); 2017 Jun; 53(53):7135-7148. PubMed ID: 28537291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interplay between Chemical Transformations and Atomic Structure in Nanocrystals and Nanoclusters.
    Han H; Yao Y; Robinson RD
    Acc Chem Res; 2021 Feb; 54(3):509-519. PubMed ID: 33434011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of bimetallic dumbbell shaped particles with a hollow junction during galvanic replacement reaction.
    Thota S; Zhou Y; Chen S; Zou S; Zhao J
    Nanoscale; 2017 May; 9(18):6128-6135. PubMed ID: 28447694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermetallic Nanocrystals: Syntheses and Catalytic Applications.
    Yan Y; Du JS; Gilroy KD; Yang D; Xia Y; Zhang H
    Adv Mater; 2017 Apr; 29(14):. PubMed ID: 28234403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ liquid cell electron microscopy of Ag-Au galvanic replacement reactions.
    Sutter EA; Sutter PW
    Nanoscale; 2017 Jan; 9(3):1271-1278. PubMed ID: 28054692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 25th anniversary article: galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well-controlled properties.
    Xia X; Wang Y; Ruditskiy A; Xia Y
    Adv Mater; 2013 Nov; 25(44):6313-33. PubMed ID: 24027074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct observation of the nanoscale Kirkendall effect during galvanic replacement reactions.
    Chee SW; Tan SF; Baraissov Z; Bosman M; Mirsaidov U
    Nat Commun; 2017 Oct; 8(1):1224. PubMed ID: 29089478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging the kinetics of anisotropic dissolution of bimetallic core-shell nanocubes using graphene liquid cells.
    Chen L; Leonardi A; Chen J; Cao M; Li N; Su D; Zhang Q; Engel M; Ye X
    Nat Commun; 2020 Jun; 11(1):3041. PubMed ID: 32546723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulating Bimetallic Nanostructures With Tunable Localized Surface Plasmon Resonance and Their Applications for Sensing.
    Min Y; Wang Y
    Front Chem; 2020; 8():411. PubMed ID: 32509732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of hollow Ag-Au bimetallic nanoparticles in polyelectrolyte multilayers.
    Zhang X; Zhang G; Zhang B; Su Z
    Langmuir; 2013 Jun; 29(22):6722-7. PubMed ID: 23642124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Galvanic replacement reactions of active-metal nanoparticles.
    Niu KY; Kulinich SA; Yang J; Zhu AL; Du XW
    Chemistry; 2012 Apr; 18(14):4234-41. PubMed ID: 22374832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of Pd@M(x)Cu(1-x) (M = Au, Pd, and Pt) nanocages with porous walls and a yolk-shell structure through galvanic replacement reactions.
    Xie S; Jin M; Tao J; Wang Y; Xie Z; Zhu Y; Xia Y
    Chemistry; 2012 Nov; 18(47):14974-80. PubMed ID: 23108763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.