These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 29566502)

  • 1. The role of entropic potential in voltage activation and K
    Wawrzkiewicz-Jałowiecka A; Grzywna ZJ
    J Chem Phys; 2018 Mar; 148(11):115103. PubMed ID: 29566502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of geometry changes in the channel pore by the gating movements on the channel's conductance.
    Wawrzkiewicz-Jałowiecka A; Borys P; Grzywna ZJ
    Biochim Biophys Acta Biomembr; 2017 Mar; 1859(3):446-458. PubMed ID: 28064020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Basis for allosteric open-state stabilization of voltage-gated potassium channels by intracellular cations.
    Goodchild SJ; Xu H; Es-Salah-Lamoureux Z; Ahern CA; Fedida D
    J Gen Physiol; 2012 Nov; 140(5):495-511. PubMed ID: 23071269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of voltage gating in potassium channels.
    Jensen MØ; Jogini V; Borhani DW; Leffler AE; Dror RO; Shaw DE
    Science; 2012 Apr; 336(6078):229-33. PubMed ID: 22499946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure prediction for the down state of a potassium channel voltage sensor.
    Grabe M; Lai HC; Jain M; Jan YN; Jan LY
    Nature; 2007 Feb; 445(7127):550-3. PubMed ID: 17187053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Mechanism of Depolarization-Dependent Inactivation in W366F Mutant of Kv1.2.
    Kondo HX; Yoshida N; Shirota M; Kinoshita K
    J Phys Chem B; 2018 Dec; 122(48):10825-10833. PubMed ID: 30395463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Omega currents in voltage-gated ion channels: what can we learn from uncovering the voltage-sensing mechanism using MD simulations?
    Tarek M; Delemotte L
    Acc Chem Res; 2013 Dec; 46(12):2755-62. PubMed ID: 23697886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic-level simulation of current-voltage relationships in single-file ion channels.
    Jensen MØ; Jogini V; Eastwood MP; Shaw DE
    J Gen Physiol; 2013 May; 141(5):619-32. PubMed ID: 23589581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational dynamics of the inner pore helix of voltage-gated potassium channels.
    Choe S; Grabe M
    J Chem Phys; 2009 Jun; 130(21):215103. PubMed ID: 19508102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion Concentration- and Voltage-Dependent Push and Pull Mechanisms of Potassium Channel Ion Conduction.
    Kasahara K; Shirota M; Kinoshita K
    PLoS One; 2016; 11(3):e0150716. PubMed ID: 26950215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Principles of conduction and hydrophobic gating in K+ channels.
    Jensen MØ; Borhani DW; Lindorff-Larsen K; Maragakis P; Jogini V; Eastwood MP; Dror RO; Shaw DE
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):5833-8. PubMed ID: 20231479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lateral Fenestrations in K(+)-Channels Explored Using Molecular Dynamics Simulations.
    Jorgensen C; Darré L; Oakes V; Torella R; Pryde D; Domene C
    Mol Pharm; 2016 Jul; 13(7):2263-73. PubMed ID: 27173896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From the gating charge response to pore domain movement: initial motions of Kv1.2 dynamics under physiological voltage changes.
    Denning EJ; Crozier PS; Sachs JN; Woolf TB
    Mol Membr Biol; 2009 Dec; 26(8):397-421. PubMed ID: 19883299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accessory Kvbeta1 subunits differentially modulate the functional expression of voltage-gated K+ channels in mouse ventricular myocytes.
    Aimond F; Kwak SP; Rhodes KJ; Nerbonne JM
    Circ Res; 2005 Mar; 96(4):451-8. PubMed ID: 15662035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic inhibition of the maximum conductance of Kv1.5 channels by extracellular K+ reduction and acidification.
    Fedida D; Zhang S; Kwan DC; Eduljee C; Kehl SJ
    Cell Biochem Biophys; 2005; 43(2):231-42. PubMed ID: 16049348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rearrangement of potassium ions and Kv1.1/Kv1.2 potassium channels in regenerating axons following end-to-end neurorrhaphy: ionic images from TOF-SIMS.
    Liu CH; Chang HM; Wu TH; Chen LY; Yang YS; Tseng TJ; Liao WC
    Histochem Cell Biol; 2017 Oct; 148(4):407-416. PubMed ID: 28405806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The glycosylation state of Kv1.2 potassium channels affects trafficking, gating, and simulated action potentials.
    Watanabe I; Zhu J; Sutachan JJ; Gottschalk A; Recio-Pinto E; Thornhill WB
    Brain Res; 2007 May; 1144():1-18. PubMed ID: 17324383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltage-dependent gating and gating charge measurements in the Kv1.2 potassium channel.
    Ishida IG; Rangel-Yescas GE; Carrasco-Zanini J; Islas LD
    J Gen Physiol; 2015 Apr; 145(4):345-58. PubMed ID: 25779871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A set of homology models of pore loop domain of six eukaryotic voltage-gated potassium channels Kv1.1-Kv1.6.
    Liu HL; Lin JC
    Proteins; 2004 May; 55(3):558-67. PubMed ID: 15103620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion concentration-dependent ion conduction mechanism of a voltage-sensitive potassium channel.
    Kasahara K; Shirota M; Kinoshita K
    PLoS One; 2013; 8(2):e56342. PubMed ID: 23418558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.