These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 29566515)

  • 1. Improved local lattice Monte Carlo simulation for charged systems.
    Jiang J; Wang ZG
    J Chem Phys; 2018 Mar; 148(11):114105. PubMed ID: 29566515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved local lattice approach for Coulombic simulations.
    Duncan A; Sedgewick RD; Coalson RD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046702. PubMed ID: 15903813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local simulation algorithms for Coulomb gases with dynamical dielectric effects.
    Duncan A; Sedgewick RD; Coalson RD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016705. PubMed ID: 16486312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local electrostatics algorithm for classical molecular dynamics simulations.
    Rottler J
    J Chem Phys; 2007 Oct; 127(13):134104. PubMed ID: 17919008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerated multiboson algorithm for Coulomb gases with dynamical dielectric effects.
    Duncan A; Sedgewick RD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066711. PubMed ID: 16907027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalization of the Wang-Landau method for off-lattice simulations.
    Shell MS; Debenedetti PG; Panagiotopoulos AZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056703. PubMed ID: 12513633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coulomb interactions in charged fluids.
    Vernizzi G; Guerrero-GarcĂ­a GI; de la Cruz MO
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016707. PubMed ID: 21867343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acceleration of Monte Carlo simulations through spatial updating in the grand canonical ensemble.
    Orkoulas G
    J Chem Phys; 2007 Aug; 127(8):084106. PubMed ID: 17764228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A continuum, O(N) Monte Carlo algorithm for charged particles.
    Rottler J; Maggs AC
    J Chem Phys; 2004 Feb; 120(7):3119-29. PubMed ID: 15268464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Avoiding unphysical kinetic traps in Monte Carlo simulations of strongly attractive particles.
    Whitelam S; Geissler PL
    J Chem Phys; 2007 Oct; 127(15):154101. PubMed ID: 17949126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Funnel hopping Monte Carlo: An efficient method to overcome broken ergodicity.
    Finkler JA; Goedecker S
    J Chem Phys; 2020 Apr; 152(16):164106. PubMed ID: 32357793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boundary conditions in local electrostatics algorithms.
    Levrel L; Maggs AC
    J Chem Phys; 2008 Jun; 128(21):214103. PubMed ID: 18537411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local Monte Carlo for electrostatics in anisotropic and nonperiodic geometries.
    Thompson D; Rottler J
    J Chem Phys; 2008 Jun; 128(21):214102. PubMed ID: 18537410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo algorithms for charged lattice gases.
    Levrel L; Maggs AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016715. PubMed ID: 16090142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel canonical Monte Carlo simulations through sequential updating of particles.
    O'Keeffe CJ; Orkoulas G
    J Chem Phys; 2009 Apr; 130(13):134109. PubMed ID: 19355719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Moving charged particles in lattice Boltzmann-based electrokinetics.
    Kuron M; Rempfer G; Schornbaum F; Bauer M; Godenschwager C; Holm C; de Graaf J
    J Chem Phys; 2016 Dec; 145(21):214102. PubMed ID: 28799336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A highly accurate and efficient algorithm for electrostatic interactions of charged particles confined by parallel metallic plates.
    Rostami S; Ghasemi SA; Nedaaee Oskoee E
    J Chem Phys; 2016 Sep; 145(12):124118. PubMed ID: 27782668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multidiscontinuity algorithm for world-line Monte Carlo simulations.
    Kato Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013310. PubMed ID: 23410463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo study of coherent scattering effects of low-energy charged particle transport in Percus-Yevick liquids.
    Tattersall WJ; Cocks DG; Boyle GJ; Buckman SJ; White RD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):043304. PubMed ID: 25974609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-frequency dielectric response of a periodic array of charged spheres in an electrolyte solution: The simple cubic lattice.
    Hou CY; Qian J; Freed DE
    Phys Rev E; 2019 Mar; 99(3-1):032604. PubMed ID: 30999468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.