BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 29566722)

  • 1. Growth differentiation factor 15 contributes to marrow adipocyte remodeling in response to the growth of leukemic cells.
    Lu W; Wan Y; Li Z; Zhu B; Yin C; Liu H; Yang S; Zhai Y; Yu Y; Wei Y; Shi J
    J Exp Clin Cancer Res; 2018 Mar; 37(1):66. PubMed ID: 29566722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abnormal adipogenic signaling in the bone marrow mesenchymal stem cells contributes to supportive microenvironment for leukemia development.
    Sabbah R; Saadi S; Shahar-Gabay T; Gerassy S; Yehudai-Resheff S; Zuckerman T
    Cell Commun Signal; 2023 Oct; 21(1):277. PubMed ID: 37817179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of bone marrow adipocytes in leukemia and chemotherapy challenges.
    Samimi A; Ghanavat M; Shahrabi S; Azizidoost S; Saki N
    Cell Mol Life Sci; 2019 Jul; 76(13):2489-2497. PubMed ID: 30715556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of FAO in AML co-cultured with BM adipocytes: mechanisms of survival and chemosensitization to cytarabine.
    Tabe Y; Saitoh K; Yang H; Sekihara K; Yamatani K; Ruvolo V; Taka H; Kaga N; Kikkawa M; Arai H; Miida T; Andreeff M; Spagnuolo PA; Konopleva M
    Sci Rep; 2018 Nov; 8(1):16837. PubMed ID: 30442990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a distinct cluster of GDF15
    Dai C; Zhang H; Zheng Z; Li CG; Ma M; Gao H; Zhang Q; Jiang F; Cui X
    Front Immunol; 2024; 15():1309739. PubMed ID: 38655264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic evolution of bone marrow adipocyte in B cell acute lymphoblastic leukemia: insights from diagnosis to post-chemotherapy.
    Jia X; Liao N; Yao Y; Guo X; Chen K; Shi P
    Cancer Biol Ther; 2024 Dec; 25(1):2323765. PubMed ID: 38465622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EV-mediated intercellular communication in acute myeloid leukemia: Transport of genetic materials in the bone marrow microenvironment.
    Zhou Q; Li Z; Xi Y
    Exp Hematol; 2024 May; 133():104175. PubMed ID: 38311165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effects of BMAL2 on Aerobic Glycolysis and Cell Proliferation in Acute Myeloid Leukemia Cells].
    Jia WJ; Mu J; Cui WJ
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2024 Apr; 32(2):402-408. PubMed ID: 38660843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping and targeting of the leukemic microenvironment.
    Witkowski MT; Kousteni S; Aifantis I
    J Exp Med; 2020 Feb; 217(2):. PubMed ID: 31873722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SMS121, a new inhibitor of CD36, impairs fatty acid uptake and viability of acute myeloid leukemia.
    Åbacka H; Masoni S; Poli G; Huang P; Gusso F; Granchi C; Minutolo F; Tuccinardi T; Hagström-Andersson AK; Lindkvist-Petersson K
    Sci Rep; 2024 Apr; 14(1):9104. PubMed ID: 38643249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute myeloid leukemia cells polarize macrophages towards a leukemia supporting state in a Growth factor independence 1 dependent manner.
    Al-Matary YS; Botezatu L; Opalka B; Hönes JM; Lams RF; Thivakaran A; Schütte J; Köster R; Lennartz K; Schroeder T; Haas R; Dührsen U; Khandanpour C
    Haematologica; 2016 Oct; 101(10):1216-1227. PubMed ID: 27390361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. C1Q labels a highly aggressive macrophage-like leukemia population indicating extramedullary infiltration and relapse.
    Yang LX; Zhang CT; Yang MY; Zhang XH; Liu HC; Luo CH; Jiang Y; Wang ZM; Yang ZY; Shi ZP; Yang YC; Wei RQ; Zhou L; Mi J; Zhou AW; Yao ZR; Xia L; Yan JS; Lu Y
    Blood; 2023 Feb; 141(7):766-786. PubMed ID: 36322939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial dysfunction decreases cisplatin sensitivity in gastric cancer cells through upregulation of integrated stress response and mitokine GDF15.
    Wang SF; Chang YL; Liu TY; Huang KH; Fang WL; Li AF; Yeh TS; Hung GY; Lee HC
    FEBS J; 2024 Mar; 291(6):1131-1150. PubMed ID: 37935441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The network structure of hematopoietic cancers.
    Nakamura-García AK; Espinal-Enríquez J
    Sci Rep; 2023 Nov; 13(1):19837. PubMed ID: 37963971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reflections on Cancer in the Bone Marrow: Adverse Roles of Adipocytes.
    Falank C; Fairfield H; Reagan MR
    Curr Mol Biol Rep; 2017 Dec; 3(4):254-262. PubMed ID: 29399440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone Marrow Adipocytes: A Link between Obesity and Bone Cancer.
    Reagan MR; Fairfield H; Rosen CJ
    Cancers (Basel); 2021 Jan; 13(3):. PubMed ID: 33498240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GDF15 boosts muscle energy burn.
    Starling S
    Nat Rev Endocrinol; 2023 Sep; 19(9):499. PubMed ID: 37452212
    [No Abstract]   [Full Text] [Related]  

  • 18. Bamezai S, Pulikkottil AJ, Yadav T, et al. A noncanonical enzymatic function of PIWIL4 maintains genomic integrity and leukemic growth in AML. Blood. 2023;142(1):90-105.
    Blood; 2024 Jan; 143(2):184. PubMed ID: 38206638
    [No Abstract]   [Full Text] [Related]  

  • 19. Reduced oxidative capacity in macrophages results in systemic insulin resistance.
    Jung SB; Choi MJ; Ryu D; Yi HS; Lee SE; Chang JY; Chung HK; Kim YK; Kang SG; Lee JH; Kim KS; Kim HJ; Kim CS; Lee CH; Williams RW; Kim H; Lee HK; Auwerx J; Shong M
    Nat Commun; 2018 Apr; 9(1):1551. PubMed ID: 29674655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Meta-Analysis of Genome-Wide Association Studies of Growth Differentiation Factor-15 Concentration in Blood.
    Jiang J; Thalamuthu A; Ho JE; Mahajan A; Ek WE; Brown DA; Breit SN; Wang TJ; Gyllensten U; Chen MH; Enroth S; Januzzi JL; Lind L; Armstrong NJ; Kwok JB; Schofield PR; Wen W; Trollor JN; Johansson Å; Morris AP; Vasan RS; Sachdev PS; Mather KA
    Front Genet; 2018; 9():97. PubMed ID: 29628937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.