These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 29567179)
1. A 3D-printed self-propelled, highly sensitive mini-motor for underwater pesticide detection. Luo Q; Yu F; Yang F; Yang C; Qiu P; Wang X Talanta; 2018 Jun; 183():297-303. PubMed ID: 29567179 [TBL] [Abstract][Full Text] [Related]
2. A highly sensitive, dual-readout assay based on gold nanoparticles for organophosphorus and carbamate pesticides. Liu D; Chen W; Wei J; Li X; Wang Z; Jiang X Anal Chem; 2012 May; 84(9):4185-91. PubMed ID: 22475016 [TBL] [Abstract][Full Text] [Related]
3. Rapid colorimetric determination of the pesticides carbofuran and dichlorvos by exploiting their inhibitory effect on the aggregation of peroxidase-mimicking platinum nanoparticles. Cao J; Wang M; She Y; Abd El-Aty AM; Hacımüftüoğlu A; Wang J; Yan M; Hong S; Lao S; Wang Y Mikrochim Acta; 2019 May; 186(6):390. PubMed ID: 31152243 [TBL] [Abstract][Full Text] [Related]
4. Dual-signal fenamithion probe by combining fluorescence with colorimetry based on Rhodamine B modified silver nanoparticles. Cui Z; Han C; Li H Analyst; 2011 Apr; 136(7):1351-6. PubMed ID: 21305084 [TBL] [Abstract][Full Text] [Related]
5. Gold-nanoparticle-based fluorescent "turn-on" sensor for selective and sensitive detection of dimethoate. Hung SH; Lee JY; Hu CC; Chiu TC Food Chem; 2018 Sep; 260():61-65. PubMed ID: 29699682 [TBL] [Abstract][Full Text] [Related]
6. Thiol-suppressed I Qing Z; Li Y; Li Y; Luo G; Hu J; Zou Z; Lei Y; Liu J; Yang R Mikrochim Acta; 2020 Aug; 187(9):497. PubMed ID: 32803418 [TBL] [Abstract][Full Text] [Related]
7. Continuous colorimetric assay for acetylcholinesterase and inhibitor screening with gold nanoparticles. Wang M; Gu X; Zhang G; Zhang D; Zhu D Langmuir; 2009 Feb; 25(4):2504-7. PubMed ID: 19154124 [TBL] [Abstract][Full Text] [Related]
8. A sensitive fluorescence assay of organophosphorus pesticides using acetylcholinesterase and copper-catalyzed click chemistry. Huang N; Qin Y; Li M; Chen T; Lu M; Zhao J Analyst; 2019 May; 144(10):3436-3441. PubMed ID: 31020297 [TBL] [Abstract][Full Text] [Related]
9. A sensitive acetylcholinesterase biosensor based on gold nanorods modified electrode for detection of organophosphate pesticide. Lang Q; Han L; Hou C; Wang F; Liu A Talanta; 2016 Aug; 156-157():34-41. PubMed ID: 27260432 [TBL] [Abstract][Full Text] [Related]
10. Bioactive paper dipstick sensors for acetylcholinesterase inhibitors based on sol-gel/enzyme/gold nanoparticle composites. Luckham RE; Brennan JD Analyst; 2010 Aug; 135(8):2028-35. PubMed ID: 20593080 [TBL] [Abstract][Full Text] [Related]
11. Electrochemical pesticide sensitivity test using acetylcholinesterase biosensor based on colloidal gold nanoparticle modified sol-gel interface. Du D; Chen S; Cai J; Zhang A Talanta; 2008 Jan; 74(4):766-72. PubMed ID: 18371707 [TBL] [Abstract][Full Text] [Related]
12. Smartphone-based colorimetric sensor array using gold nanoparticles for rapid distinguishment of multiple pesticides in real samples. Zhao T; Liang X; Guo X; Yang X; Guo J; Zhou X; Huang X; Zhang W; Wang Y; Liu Z; Jiang Z; Zhou H; Zhou H Food Chem; 2023 Mar; 404(Pt B):134768. PubMed ID: 36444090 [TBL] [Abstract][Full Text] [Related]
13. Carbon dots-assisted colorimetric and fluorometric dual-mode protocol for acetylcholinesterase activity and inhibitors screening based on the inner filter effect of silver nanoparticles. Zhao D; Chen C; Sun J; Yang X Analyst; 2016 Jun; 141(11):3280-8. PubMed ID: 27099097 [TBL] [Abstract][Full Text] [Related]
14. Modulated dye retention for the signal-on fluorometric determination of acetylcholinesterase inhibitor. Liao S; Han W; Ding H; Xie D; Tan H; Yang S; Wu Z; Shen G; Yu R Anal Chem; 2013 May; 85(10):4968-73. PubMed ID: 23597308 [TBL] [Abstract][Full Text] [Related]
15. A simple, label-free AuNPs-based colorimetric ultrasensitive detection of nerve agents and highly toxic organophosphate pesticide. Sun J; Guo L; Bao Y; Xie J Biosens Bioelectron; 2011 Oct; 28(1):152-7. PubMed ID: 21803563 [TBL] [Abstract][Full Text] [Related]
16. Ratiometric sensors with selective fluorescence enhancement effects based on photonic crystals for the determination of acetylcholinesterase and its inhibitor. Liu R; Bao L; Zhang S; Wu Z; Zhou J; Liu C; Yu R J Mater Chem B; 2020 Dec; 8(48):11001-11009. PubMed ID: 33225325 [TBL] [Abstract][Full Text] [Related]
17. Gold nanoparticle-based colorimetric aptasensor for rapid detection of six organophosphorous pesticides. Bai W; Zhu C; Liu J; Yan M; Yang S; Chen A Environ Toxicol Chem; 2015 Oct; 34(10):2244-9. PubMed ID: 26031388 [TBL] [Abstract][Full Text] [Related]
18. Fluorometric competitive immunoassay for chlorpyrifos using rhodamine-modified gold nanoparticles as a label. Dou X; Zhang L; Liu C; Li Q; Luo J; Yang M Mikrochim Acta; 2017 Dec; 185(1):41. PubMed ID: 29594500 [TBL] [Abstract][Full Text] [Related]
19. Glutathione regulation-based dual-functional upconversion sensing-platform for acetylcholinesterase activity and cadmium ions. Fang A; Chen H; Li H; Liu M; Zhang Y; Yao S Biosens Bioelectron; 2017 Jan; 87():545-551. PubMed ID: 27611473 [TBL] [Abstract][Full Text] [Related]
20. Gold nanoclusters-Cu(2+) ensemble-based fluorescence turn-on and real-time assay for acetylcholinesterase activity and inhibitor screening. Sun J; Yang X Biosens Bioelectron; 2015 Dec; 74():177-82. PubMed ID: 26141104 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]