These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 29567179)
21. Polyacrylic acid-coated cerium oxide nanoparticles: An oxidase mimic applied for colorimetric assay to organophosphorus pesticides. Zhang SX; Xue SF; Deng J; Zhang M; Shi G; Zhou T Biosens Bioelectron; 2016 Nov; 85():457-463. PubMed ID: 27208478 [TBL] [Abstract][Full Text] [Related]
22. A fluorometric assay for acetylcholinesterase activity and inhibitor detection based on DNA-templated copper/silver nanoclusters. Li W; Li W; Hu Y; Xia Y; Shen Q; Nie Z; Huang Y; Yao S Biosens Bioelectron; 2013 Sep; 47():345-9. PubMed ID: 23603132 [TBL] [Abstract][Full Text] [Related]
23. Lab-on-a-drop: biocompatible fluorescent nanoprobes of gold nanoclusters for label-free evaluation of phosphorylation-induced inhibition of acetylcholinesterase activity towards the ultrasensitive detection of pesticide residues. Zhang N; Si Y; Sun Z; Li S; Li S; Lin Y; Wang H Analyst; 2014 Sep; 139(18):4620-8. PubMed ID: 25050413 [TBL] [Abstract][Full Text] [Related]
24. A dual-mode colorimetric and fluorometric "light on" sensor for thiocyanate based on fluorescent carbon dots and unmodified gold nanoparticles. Zhao D; Chen C; Lu L; Yang F; Yang X Analyst; 2015 Dec; 140(24):8157-64. PubMed ID: 26567774 [TBL] [Abstract][Full Text] [Related]
26. Visual detection of organophosphorus pesticides represented by mathamidophos using Au nanoparticles as colorimetric probe. Li H; Guo J; Ping H; Liu L; Zhang M; Guan F; Sun C; Zhang Q Talanta; 2011 Dec; 87():93-9. PubMed ID: 22099654 [TBL] [Abstract][Full Text] [Related]
27. Oxidase-like Nanozyme-Mediated Altering of the Aspect Ratio of Gold Nanorods for Breaking through H Fu R; Zhou J; Wang Y; Liu Y; Liu H; Yang Q; Zhao Q; Jiao B; He Y ACS Appl Bio Mater; 2021 Apr; 4(4):3539-3546. PubMed ID: 35014439 [TBL] [Abstract][Full Text] [Related]
28. Modulated growth of nanoparticles. Application for sensing nerve gases. Virel A; Saa L; Pavlov V Anal Chem; 2009 Jan; 81(1):268-72. PubMed ID: 19049371 [TBL] [Abstract][Full Text] [Related]
29. Silicon quantum dot-coated onto gold nanoparticles as an optical probe for colorimetric and fluorometric determination of cysteine. Liu L; Zhu G; Zeng W; Yi Y; Lv B; Qian J; Zhang D Mikrochim Acta; 2019 Jan; 186(2):98. PubMed ID: 30631943 [TBL] [Abstract][Full Text] [Related]
30. Colorimetric and fluorometric assays for acetylcholinesterase and its inhibitors screening based on a fluorescein derivate. Wang B; Wang H; Wang F; Zhou G; Wang Y; Kambam S; Chen X Bioorg Med Chem Lett; 2014 Jan; 24(2):552-5. PubMed ID: 24360998 [TBL] [Abstract][Full Text] [Related]
31. Highly sensitive colorimetric detection of organophosphate pesticides using copper catalyzed click chemistry. Fu G; Chen W; Yue X; Jiang X Talanta; 2013 Jan; 103():110-5. PubMed ID: 23200365 [TBL] [Abstract][Full Text] [Related]
32. Colorimetric Detection of Organophosphate Pesticides Based on Acetylcholinesterase and Cysteamine Capped Gold Nanoparticles as Nanozyme. Shah MM; Ren W; Irudayaraj J; Sajini AA; Ali MI; Ahmad B Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884060 [TBL] [Abstract][Full Text] [Related]
33. Affinity binding-guided fluorescent nanobiosensor for acetylcholinesterase inhibitors via distance modulation between the fluorophore and metallic nanoparticle. Zhang Y; Hei T; Cai Y; Gao Q; Zhang Q Anal Chem; 2012 Mar; 84(6):2830-6. PubMed ID: 22339669 [TBL] [Abstract][Full Text] [Related]
34. Highly stable water dispersible calix[4]pyrrole octa-hydrazide protected gold nanoparticles as colorimetric and fluorometric chemosensors for selective signaling of Co(II) ions. Bhatt KD; Vyas DJ; Makwana BA; Darjee SM; Jain VK Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():94-100. PubMed ID: 24231744 [TBL] [Abstract][Full Text] [Related]
36. Peroxidase-like activity of acetylcholine-based colorimetric detection of acetylcholinesterase activity and an organophosphorus inhibitor. Han T; Wang G J Mater Chem B; 2019 Apr; 7(16):2613-2618. PubMed ID: 32254993 [TBL] [Abstract][Full Text] [Related]
37. Gold nanoparticle-based detection of dopamine based on fluorescence resonance energy transfer between a 4-(4-dialkylaminostyryl)pyridinium derived fluorophore and citrate-capped gold nanoparticles. Peng J; Zhou N; Zhong Y; Su Y; Zhao L; Chang YT Mikrochim Acta; 2019 Aug; 186(9):618. PubMed ID: 31410617 [TBL] [Abstract][Full Text] [Related]
38. Recognition of malathion pesticides in agricultural samples by using α-CD functionalized gold nanoparticles as a colorimetric sensor. Sahu B; Kurrey R; Deb MK; Khalkho BR; Manikpuri S Talanta; 2023 Jul; 259():124526. PubMed ID: 37054619 [TBL] [Abstract][Full Text] [Related]
39. Optimized coverage of gold nanoparticles at tyrosinase electrode for measurement of a pesticide in various water samples. Kim GY; Shim J; Kang MS; Moon SH J Hazard Mater; 2008 Aug; 156(1-3):141-7. PubMed ID: 18206302 [TBL] [Abstract][Full Text] [Related]
40. Stimulus Response of GQD-Sensitized Tb/GMP ICP Nanoparticles with Dual-Responsive Ratiometric Fluorescence: Toward Point-of-Use Analysis of Acetylcholinesterase and Organophosphorus Pesticide Poisoning with Acetylcholinesterase as a Biomarker. Ma R; Xu M; Liu C; Shi G; Deng J; Zhou T ACS Appl Mater Interfaces; 2020 Sep; 12(37):42119-42128. PubMed ID: 32805836 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]