These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 29567195)
1. Modeling the effects of material properties on tablet compaction: A building block for controlling both batch and continuous pharmaceutical manufacturing processes. Escotet-Espinoza MS; Vadodaria S; Singh R; Muzzio FJ; Ierapetritou MG Int J Pharm; 2018 May; 543(1-2):274-287. PubMed ID: 29567195 [TBL] [Abstract][Full Text] [Related]
2. Continuous direct tablet compression: effects of impeller rotation rate, total feed rate and drug content on the tablet properties and drug release. Järvinen MA; Paaso J; Paavola M; Leiviskä K; Juuti M; Muzzio F; Järvinen K Drug Dev Ind Pharm; 2013 Nov; 39(11):1802-8. PubMed ID: 23163644 [TBL] [Abstract][Full Text] [Related]
3. Particle size distribution and evolution in tablet structure during and after compaction. Fichtner F; Rasmuson A; Alderborn G Int J Pharm; 2005 Mar; 292(1-2):211-25. PubMed ID: 15725568 [TBL] [Abstract][Full Text] [Related]
4. Mechanistic study of the effect of roller compaction and lubricant on tablet mechanical strength. He X; Secreast PJ; Amidon GE J Pharm Sci; 2007 May; 96(5):1342-55. PubMed ID: 17455360 [TBL] [Abstract][Full Text] [Related]
5. Use of a continuous twin screw granulation and drying system during formulation development and process optimization. Vercruysse J; Peeters E; Fonteyne M; Cappuyns P; Delaet U; Van Assche I; De Beer T; Remon JP; Vervaet C Eur J Pharm Biopharm; 2015 Jan; 89():239-47. PubMed ID: 25528462 [TBL] [Abstract][Full Text] [Related]
6. Instrumented roll technology for the design space development of roller compaction process. Nesarikar VV; Vatsaraj N; Patel C; Early W; Pandey P; Sprockel O; Gao Z; Jerzewski R; Miller R; Levin M Int J Pharm; 2012 Apr; 426(1-2):116-131. PubMed ID: 22286023 [TBL] [Abstract][Full Text] [Related]
7. Investigations into the tensile failure of doubly-convex cylindrical tablets under diametral loading using finite element methodology. Podczeck F; Drake KR; Newton JM Int J Pharm; 2013 Sep; 454(1):412-24. PubMed ID: 23834836 [TBL] [Abstract][Full Text] [Related]
8. Comparative binder efficiency modeling of dry granulation binders using roller compaction. Gupte A; DeHart M; Stagner WC; Haware RV Drug Dev Ind Pharm; 2017 Apr; 43(4):574-583. PubMed ID: 27977316 [TBL] [Abstract][Full Text] [Related]
9. Commercial scale validation of a process scale-up model for lubricant blending of pharmaceutical powders. Kushner J; Schlack H Int J Pharm; 2014 Nov; 475(1-2):147-55. PubMed ID: 25152166 [TBL] [Abstract][Full Text] [Related]
10. Relationships between the effective interparticulate contact area and the tensile strength of tablets of amorphous and crystalline lactose of varying particle size. Sebhatu T; Alderborn G Eur J Pharm Sci; 1999 Aug; 8(4):235-42. PubMed ID: 10425373 [TBL] [Abstract][Full Text] [Related]
11. The influence of API concentration on the roller compaction process: modeling and prediction of the post compacted ribbon, granule and tablet properties using multivariate data analysis. Boersen N; Carvajal MT; Morris KR; Peck GE; Pinal R Drug Dev Ind Pharm; 2015; 41(9):1470-8. PubMed ID: 25212638 [TBL] [Abstract][Full Text] [Related]
12. Influence of shear intensity and total shear on properties of blends and tablets of lactose and cellulose lubricated with magnesium stearate. Mehrotra A; Llusa M; Faqih A; Levin M; Muzzio FJ Int J Pharm; 2007 May; 336(2):284-91. PubMed ID: 17236729 [TBL] [Abstract][Full Text] [Related]
13. Degree of compression as a potential process control tool of tablet tensile strength. Nordström J; Alderborn G Pharm Dev Technol; 2011; 16(6):599-608. PubMed ID: 20649411 [TBL] [Abstract][Full Text] [Related]
14. A study of a new co-processed dry binder based on spray-dried lactose and microcrystalline cellulose. Mužíková J; Sináglová P Ceska Slov Farm; 2013 Jun; 62(3):127-31. PubMed ID: 23961814 [TBL] [Abstract][Full Text] [Related]
15. Compaction of functionalized calcium carbonate, a porous and crystalline microparticulate material with a lamellar surface. Stirnimann T; Atria S; Schoelkopf J; Gane PA; Alles R; Huwyler J; Puchkov M Int J Pharm; 2014 May; 466(1-2):266-75. PubMed ID: 24631309 [TBL] [Abstract][Full Text] [Related]
16. Influence of compaction properties and interfacial topography on the performance of bilayer tablets. Kottala N; Abebe A; Sprockel O; Akseli I; Nikfar F; Cuitiño AM Int J Pharm; 2012 Oct; 436(1-2):171-8. PubMed ID: 22728259 [TBL] [Abstract][Full Text] [Related]
17. The impact of roller compaction and tablet compression on physicomechanical properties of pharmaceutical excipients. Iyer RM; Hegde S; Dinunzio J; Singhal D; Malick W Pharm Dev Technol; 2014 Aug; 19(5):583-92. PubMed ID: 23941645 [TBL] [Abstract][Full Text] [Related]
18. Lubricant based determination of design space for continuously manufactured high dose paracetamol tablets. Taipale-Kovalainen K; Karttunen AP; Ketolainen J; Korhonen O Eur J Pharm Sci; 2018 Mar; 115():1-10. PubMed ID: 29277668 [TBL] [Abstract][Full Text] [Related]
19. Tableting performance of various mannitol and lactose grades assessed by compaction simulation and chemometrical analysis. Paul S; Tajarobi P; Boissier C; Sun CC Int J Pharm; 2019 Jul; 566():24-31. PubMed ID: 31095984 [TBL] [Abstract][Full Text] [Related]
20. Real-time tablet formation monitoring with ultrasound measurements in eccentric single station tablet press. Leskinen JT; Simonaho SP; Hakulinen M; Ketolainen J Int J Pharm; 2013 Feb; 442(1-2):27-34. PubMed ID: 22985771 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]