These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 29567248)
1. The integration of multi-platform MS-based metabolomics and multivariate analysis for the geographical origin discrimination of Oryza sativa L. Lim DK; Mo C; Lee JH; Long NP; Dong Z; Li J; Lim J; Kwon SW J Food Drug Anal; 2018 Apr; 26(2):769-777. PubMed ID: 29567248 [TBL] [Abstract][Full Text] [Related]
2. Optimized Mass Spectrometry-Based Metabolite Extraction and Analysis for the Geographical Discrimination of White Rice ( Lim DK; Long NP; Mo C; Dong Z; Lim J; Kwon SW J AOAC Int; 2018 Mar; 101(2):498-506. PubMed ID: 28762322 [TBL] [Abstract][Full Text] [Related]
3. Non-destructive profiling of volatile organic compounds using HS-SPME/GC-MS and its application for the geographical discrimination of white rice. Lim DK; Mo C; Lee DK; Long NP; Lim J; Kwon SW J Food Drug Anal; 2018 Jan; 26(1):260-267. PubMed ID: 29389563 [TBL] [Abstract][Full Text] [Related]
4. Development and assessment of a lysophospholipid-based deep learning model to discriminate geographical origins of white rice. Long NP; Lim DK; Mo C; Kim G; Kwon SW Sci Rep; 2017 Aug; 7(1):8552. PubMed ID: 28819110 [TBL] [Abstract][Full Text] [Related]
5. A rapid and reliable method for discriminating rice products from different regions using MCX-based solid-phase extraction and DI-MS/MS-based metabolomics approach. Lim DK; Mo C; Long NP; Lim J; Kwon SW J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Sep; 1061-1062():185-192. PubMed ID: 28743095 [TBL] [Abstract][Full Text] [Related]
6. Metabolomic fingerprinting of volatile organic compounds for the geographical discrimination of rice samples from China, Vietnam and India. Ch R; Chevallier O; McCarron P; McGrath TF; Wu D; Nguyen Doan Duy L; Kapil AP; McBride M; Elliott CT Food Chem; 2021 Jan; 334():127553. PubMed ID: 32688177 [TBL] [Abstract][Full Text] [Related]
7. A comparative HS-SPME/GC-MS-based metabolomics approach for discriminating selected japonica rice varieties from different regions of China in raw and cooked form. Zhao Q; Xi J; Xu D; Jin Y; Wu F; Tong Q; Yin Y; Xu X Food Chem; 2022 Aug; 385():132701. PubMed ID: 35320761 [TBL] [Abstract][Full Text] [Related]
8. Geographical origin traceability of rice using a FTIR-based metabolomics approach. Xue W; Wang Q; Li X; Wang M; Dong Z; Bian H; Li F Mol Omics; 2023 Jul; 19(6):504-513. PubMed ID: 37158208 [TBL] [Abstract][Full Text] [Related]
9. Discrimination of geographical origin of rice based on multi-element fingerprinting by high resolution inductively coupled plasma mass spectrometry. Cheajesadagul P; Arnaudguilhem C; Shiowatana J; Siripinyanond A; Szpunar J Food Chem; 2013 Dec; 141(4):3504-9. PubMed ID: 23993513 [TBL] [Abstract][Full Text] [Related]
10. Authenticity of rice (Oryza sativa L.) geographical origin based on analysis of C, N, O and S stable isotope ratios: a preliminary case report in Korea, China and Philippine. Chung IM; Kim JK; Prabakaran M; Yang JH; Kim SH J Sci Food Agric; 2016 May; 96(7):2433-9. PubMed ID: 26243037 [TBL] [Abstract][Full Text] [Related]
11. Lau H; Laserna AKC; Li SFY Food Chem; 2020 Dec; 332():127424. PubMed ID: 32619947 [TBL] [Abstract][Full Text] [Related]
12. Comparison of the contents of phenolic compounds including flavonoids and antioxidant activity of rice (Oryza sativa) and Chinese wild rice (Zizania latifolia). Yu X; Yang T; Qi Q; Du Y; Shi J; Liu X; Liu Y; Zhang H; Zhang Z; Yan N Food Chem; 2021 May; 344():128600. PubMed ID: 33221101 [TBL] [Abstract][Full Text] [Related]
13. Compound-specific δ Chung IM; Kim JK; An YJ; Kwon C; Kim SY; Yang YJ; Yarnes CT; Chi HY; Kim SH Food Chem; 2019 Jun; 283():305-314. PubMed ID: 30722876 [TBL] [Abstract][Full Text] [Related]
14. Improved geographical origin discrimination for tea using ICP-MS and ICP-OES techniques in combination with chemometric approach. Liu HL; Zeng YT; Zhao X; Tong HR J Sci Food Agric; 2020 Jun; 100(8):3507-3516. PubMed ID: 32201949 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous Profiling of Lysoglycerophospholipids in Rice (Oryza sativa L.) Using Direct Infusion-Tandem Mass Spectrometry with Multiple Reaction Monitoring. Lim DK; Mo C; Long NP; Kim G; Kwon SW J Agric Food Chem; 2017 Mar; 65(12):2628-2634. PubMed ID: 28245645 [TBL] [Abstract][Full Text] [Related]
16. Specific targeted quantification combined with non-targeted metabolite profiling for quality evaluation of Gastrodia elata tubers from different geographical origins and cultivars. Ma XD; Fan YX; Jin CC; Wang F; Xin GZ; Li P; Li HJ J Chromatogr A; 2016 Jun; 1450():53-63. PubMed ID: 27157425 [TBL] [Abstract][Full Text] [Related]
17. Combination of mass spectrometry-based targeted lipidomics and supervised machine learning algorithms in detecting adulterated admixtures of white rice. Lim DK; Long NP; Mo C; Dong Z; Cui L; Kim G; Kwon SW Food Res Int; 2017 Oct; 100(Pt 1):814-821. PubMed ID: 28873754 [TBL] [Abstract][Full Text] [Related]
18. Geographical origin traceability of Sengcu rice using elemental markers and multivariate analysis. Bui MQ; Quan TC; Nguyen QT; Tran-Lam TT; Dao YH Food Addit Contam Part B Surveill; 2022 Sep; 15(3):177-190. PubMed ID: 35722667 [TBL] [Abstract][Full Text] [Related]
19. Fingerprint profile and efficacy-associated markers of Nigella sativa oil for geographical origin determination using targeted and untargeted HPTLC-multivariate analysis. Shawky E; El Newehy NM; Beltagy AM; Abd-Alhaseeb MM; Omran GA; Harraz FM J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Jun; 1087-1088():108-117. PubMed ID: 29730530 [TBL] [Abstract][Full Text] [Related]
20. Analysis of secondary metabolites induced by yellowing process for understanding rice yellowing mechanism. Liu Y; Liu J; Wang R; Sun H; Li M; Strappe P; Zhou Z Food Chem; 2021 Apr; 342():128204. PubMed ID: 33097330 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]