BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 29567267)

  • 1. Determination of as-discarded methane potential in residential and commercial municipal solid waste.
    Chickering GW; Krause MJ; Townsend TG
    Waste Manag; 2018 Jun; 76():82-89. PubMed ID: 29567267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of parameters influencing methane generation due to biodegradation of municipal solid waste in landfills and laboratory experiments.
    Fei X; Zekkos D; Raskin L
    Waste Manag; 2016 Sep; 55():276-87. PubMed ID: 26525969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the biochemical methane potential (BMP) of low-organic waste at Danish landfills.
    Mou Z; Scheutz C; Kjeldsen P
    Waste Manag; 2014 Nov; 34(11):2251-9. PubMed ID: 25106120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards developing a representative biochemical methane potential (BMP) assay for landfilled municipal solid waste - A review.
    Pearse LF; Hettiaratchi JP; Kumar S
    Bioresour Technol; 2018 Apr; 254():312-324. PubMed ID: 29395741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methods for determining the methane generation potential and methane generation rate constant for the FOD model: a review.
    Park JK; Chong YG; Tameda K; Lee NH
    Waste Manag Res; 2018 Mar; 36(3):200-220. PubMed ID: 29415628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaling up laboratory column testing results to predict coupled methane generation and biological settlement in full-scale municipal solid waste landfills.
    He H; Fei X
    Waste Manag; 2020 Sep; 115():25-35. PubMed ID: 32717549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of fine fraction mined from two Finnish landfills.
    Mönkäre TJ; Palmroth MR; Rintala JA
    Waste Manag; 2016 Jan; 47(Pt A):34-9. PubMed ID: 25817722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of landfill gas generation potential from lignocellulose biomass contents of municipal solid waste.
    Singh D; Chavan D; Pandey AK; Periyaswami L; Kumar S
    Sci Total Environ; 2021 Sep; 785():147243. PubMed ID: 33930808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncontrolled methane emissions from a MSW landfill surface: influence of landfill features and side slopes.
    Di Trapani D; Di Bella G; Viviani G
    Waste Manag; 2013 Oct; 33(10):2108-15. PubMed ID: 23465313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decomposition and carbon storage of hardwood and softwood branches in laboratory-scale landfills.
    Wang X; Barlaz MA
    Sci Total Environ; 2016 Jul; 557-558():355-62. PubMed ID: 27016683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implications of municipal solid waste co-disposal experiments on biodegradation and biochemical compatibility.
    Rohlf EM; Karimi S; Bareither CA
    Waste Manag; 2021 Jun; 129():62-75. PubMed ID: 34029982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translating landfill methane generation parameters among first-order decay models.
    Krause MJ; Chickering GW; Townsend TG
    J Air Waste Manag Assoc; 2016 Nov; 66(11):1084-1097. PubMed ID: 27332778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific model for the estimation of methane emission from municipal solid waste landfills in India.
    Kumar S; Nimchuk N; Kumar R; Zietsman J; Ramani T; Spiegelman C; Kenney M
    Bioresour Technol; 2016 Sep; 216():981-7. PubMed ID: 27343450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of methane emissions and energy recovery potential from the municipal solid waste landfills of Delhi, India.
    Ghosh P; Shah G; Chandra R; Sahota S; Kumar H; Vijay VK; Thakur IS
    Bioresour Technol; 2019 Jan; 272():611-615. PubMed ID: 30385029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The environmental impacts of municipal solid waste landfills in Europe: A life cycle assessment of proper reference cases to support decision making.
    Sauve G; Van Acker K
    J Environ Manage; 2020 May; 261():110216. PubMed ID: 32148286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating the methane generation rate constant (k value) of low-organic waste at Danish landfills.
    Mou Z; Scheutz C; Kjeldsen P
    Waste Manag; 2015 Jan; 35():170-6. PubMed ID: 25453319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methane emission quantification from municipal waste landfills: models and computer software-a case study of Long An Province, Vietnam.
    Bui LT; Nguyen PH; Nguyen DCM
    Environ Sci Pollut Res Int; 2022 Jun; 29(28):41886-41908. PubMed ID: 34236610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation and application of site-specific data to revise the first-order decay model for estimating landfill gas generation and emissions at Danish landfills.
    Mou Z; Scheutz C; Kjeldsen P
    J Air Waste Manag Assoc; 2015 Jun; 65(6):686-98. PubMed ID: 25976482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methane and leachate pollutant emission potential from various fractions of municipal solid waste (MSW): effects of source separation and aerobic treatment.
    Jokela JP; Kettunen RH; Rintala JA
    Waste Manag Res; 2002 Oct; 20(5):424-33. PubMed ID: 12498479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste.
    Wimmer B; Hrad M; Huber-Humer M; Watzinger A; Wyhlidal S; Reichenauer TG
    Waste Manag; 2013 Oct; 33(10):2083-90. PubMed ID: 23540355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.