BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 29567319)

  • 1. In silico design of Mycobacterium tuberculosis epitope ensemble vaccines.
    Shah P; Mistry J; Reche PA; Gatherer D; Flower DR
    Mol Immunol; 2018 May; 97():56-62. PubMed ID: 29567319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico analysis of epitope-based vaccine candidate against tuberculosis using reverse vaccinology.
    Bibi S; Ullah I; Zhu B; Adnan M; Liaqat R; Kong WB; Niu S
    Sci Rep; 2021 Jan; 11(1):1249. PubMed ID: 33441913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA vaccine with discontinuous T-cell epitope insertions into HSP65 scaffold as a potential means to improve immunogenicity of multi-epitope Mycobacterium tuberculosis vaccine.
    Wu M; Li M; Yue Y; Xu W
    Microbiol Immunol; 2016 Sep; 60(9):634-45. PubMed ID: 27531823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrated computational framework to design a multi-epitopes vaccine against Mycobacterium tuberculosis.
    Albutti A
    Sci Rep; 2021 Nov; 11(1):21929. PubMed ID: 34753983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mycobacterium tuberculosis infection and vaccine development.
    Tang J; Yam WC; Chen Z
    Tuberculosis (Edinb); 2016 May; 98():30-41. PubMed ID: 27156616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuberculosis: Current Status, Diagnosis, Treatment and Development of Novel Vaccines.
    Yadav J; Verma S; Chaudhary D; Jaiwal PK; Jaiwal R
    Curr Pharm Biotechnol; 2019; 20(6):446-458. PubMed ID: 31208308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel vaccine candidates against Mycobacterium tuberculosis.
    Khoshnood S; Heidary M; Haeili M; Drancourt M; Darban-Sarokhalil D; Nasiri MJ; Lohrasbi V
    Int J Biol Macromol; 2018 Dec; 120(Pt A):180-188. PubMed ID: 30098365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Difference in TB10.4 T-cell epitope recognition following immunization with recombinant TB10.4, BCG or infection with Mycobacterium tuberculosis.
    Billeskov R; Grandal MV; Poulsen C; Christensen JP; Winther N; Vingsbo-Lundberg C; Hoang TT; van Deurs B; Song YH; Aagaard C; Andersen P; Dietrich J
    Eur J Immunol; 2010 May; 40(5):1342-54. PubMed ID: 20186878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protective Vaccine Efficacy of the Complete Form of PPE39 Protein from Mycobacterium tuberculosis Beijing/K Strain in Mice.
    Kim A; Hur YG; Gu S; Cho SN
    Clin Vaccine Immunol; 2017 Nov; 24(11):. PubMed ID: 28877927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuberculosis vaccine development at a divide.
    Kaufmann SH
    Curr Opin Pulm Med; 2014 May; 20(3):294-300. PubMed ID: 24626237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Novel Potential Vaccine Candidates against Tuberculosis Based on Reverse Vaccinology.
    Monterrubio-López GP; González-Y-Merchand JA; Ribas-Aparicio RM
    Biomed Res Int; 2015; 2015():483150. PubMed ID: 25961021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic Long Peptide Derived from Mycobacterium tuberculosis Latency Antigen Rv1733c Protects against Tuberculosis.
    Coppola M; van den Eeden SJ; Wilson L; Franken KL; Ottenhoff TH; Geluk A
    Clin Vaccine Immunol; 2015 Sep; 22(9):1060-9. PubMed ID: 26202436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of proteomics on anti-Mycobacterium tuberculosis (MTB) vaccine development.
    Jagusztyn-Krynicka EK; Roszczenko P; Grabowska A
    Pol J Microbiol; 2009; 58(4):281-7. PubMed ID: 20380137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New tuberculosis vaccines.
    Martín Montañés C; Gicquel B
    Enferm Infecc Microbiol Clin; 2011 Mar; 29 Suppl 1():57-62. PubMed ID: 21420568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential proteomics approach to identify putative protective antigens of Mycobacterium tuberculosis presented during early stages of macrophage infection and their evaluation as DNA vaccines.
    Sharma S; Rajmani RS; Kumar A; Bhaskar A; Singh A; Manivel V; Tyagi AK; Rao KV
    Indian J Exp Biol; 2015 Jul; 53(7):429-39. PubMed ID: 26245027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in tuberculosis vaccine strategies.
    Skeiky YA; Sadoff JC
    Nat Rev Microbiol; 2006 Jun; 4(6):469-76. PubMed ID: 16710326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunogenicity and protective efficacy conferred by a novel recombinant Mycobacterium bovis bacillus Calmette-Guérin strain expressing interleukin-12p70 of human cytokine and Ag85A of Mycobacterium tuberculosis fusion protein.
    Deng YH; He HY; Zhang FJ
    Scand J Immunol; 2013 Dec; 78(6):497-506. PubMed ID: 24283772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards new TB vaccines: What are the challenges?
    Dockrell HM
    Pathog Dis; 2016 Jun; 74(4):ftw016. PubMed ID: 26960944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel nanoemulsion vaccine induces mucosal Interleukin-17 responses and confers protection upon Mycobacterium tuberculosis challenge in mice.
    Ahmed M; Smith DM; Hamouda T; Rangel-Moreno J; Fattom A; Khader SA
    Vaccine; 2017 Sep; 35(37):4983-4989. PubMed ID: 28774560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The current status, challenges, and future developments of new tuberculosis vaccines.
    Gong W; Liang Y; Wu X
    Hum Vaccin Immunother; 2018 Jul; 14(7):1697-1716. PubMed ID: 29601253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.