These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 29567568)
1. Hybridization conditions of oligonucleotide-capped gold nanoparticles for SPR sensing of microRNA. Hong L; Lu M; Dinel MP; Blain P; Peng W; Gu H; Masson JF Biosens Bioelectron; 2018 Jun; 109():230-236. PubMed ID: 29567568 [TBL] [Abstract][Full Text] [Related]
2. Surface plasmon resonance biosensor for sensitive detection of microRNA and cancer cell using multiple signal amplification strategy. Liu R; Wang Q; Li Q; Yang X; Wang K; Nie W Biosens Bioelectron; 2017 Jan; 87():433-438. PubMed ID: 27589408 [TBL] [Abstract][Full Text] [Related]
3. Boronic Acid Functionalized Au Nanoparticles for Selective MicroRNA Signal Amplification in Fiber-Optic Surface Plasmon Resonance Sensing System. Qian S; Lin M; Ji W; Yuan H; Zhang Y; Jing Z; Zhao J; Masson JF; Peng W ACS Sens; 2018 May; 3(5):929-935. PubMed ID: 29741084 [TBL] [Abstract][Full Text] [Related]
4. Enzyme-free surface plasmon resonance aptasensor for amplified detection of adenosine via target-triggering strand displacement cycle and Au nanoparticles. Yao GH; Liang RP; Huang CF; Zhang L; Qiu JD Anal Chim Acta; 2015 Apr; 871():28-34. PubMed ID: 25847158 [TBL] [Abstract][Full Text] [Related]
5. In situ template generation of silver nanoparticles as amplification tags for ultrasensitive surface plasmon resonance biosensing of microRNA. Wang X; Hou T; Lin H; Lv W; Li H; Li F Biosens Bioelectron; 2019 Jul; 137():82-87. PubMed ID: 31082648 [TBL] [Abstract][Full Text] [Related]
6. Aptamer-Au NPs conjugates-enhanced SPR sensing for the ultrasensitive sandwich immunoassay. Wang J; Munir A; Li Z; Zhou HS Biosens Bioelectron; 2009 Sep; 25(1):124-9. PubMed ID: 19592231 [TBL] [Abstract][Full Text] [Related]
7. High sensitivity surface plasmon resonance biosensor for detection of microRNA based on gold nanoparticles-decorated molybdenum sulfide. Nie W; Wang Q; Yang X; Zhang H; Li Z; Gao L; Zheng Y; Liu X; Wang K Anal Chim Acta; 2017 Nov; 993():55-62. PubMed ID: 29078955 [TBL] [Abstract][Full Text] [Related]
8. Aptamer/thrombin/aptamer-AuNPs sandwich enhanced surface plasmon resonance sensor for the detection of subnanomolar thrombin. Bai Y; Feng F; Zhao L; Wang C; Wang H; Tian M; Qin J; Duan Y; He X Biosens Bioelectron; 2013 Sep; 47():265-70. PubMed ID: 23584389 [TBL] [Abstract][Full Text] [Related]
9. High sensitivity surface plasmon resonance biosensor for detection of microRNA and small molecule based on graphene oxide-gold nanoparticles composites. Li Q; Wang Q; Yang X; Wang K; Zhang H; Nie W Talanta; 2017 Nov; 174():521-526. PubMed ID: 28738618 [TBL] [Abstract][Full Text] [Related]
10. Graphene oxide-gold nanoparticles hybrids-based surface plasmon resonance for sensitive detection of microRNA. Wang Q; Li Q; Yang X; Wang K; Du S; Zhang H; Nie Y Biosens Bioelectron; 2016 Mar; 77():1001-7. PubMed ID: 26547426 [TBL] [Abstract][Full Text] [Related]
11. Low-Fouling Surface Plasmon Resonance Sensor for Highly Sensitive Detection of MicroRNA in a Complex Matrix Based on the DNA Tetrahedron. Nie W; Wang Q; Zou L; Zheng Y; Liu X; Yang X; Wang K Anal Chem; 2018 Nov; 90(21):12584-12591. PubMed ID: 30346693 [TBL] [Abstract][Full Text] [Related]
12. Amplified surface plasmon resonance based DNA biosensors, aptasensors, and Hg2+ sensors using hemin/G-quadruplexes and Au nanoparticles. Pelossof G; Tel-Vered R; Liu XQ; Willner I Chemistry; 2011 Aug; 17(32):8904-12. PubMed ID: 21726008 [TBL] [Abstract][Full Text] [Related]
13. Surface plasmon resonance biosensor for the detection of miRNAs by combining the advantages of homogeneous reaction and heterogeneous detection. Huang Y; Sun T; Liu L; Xia N; Zhao Y; Yi X Talanta; 2021 Nov; 234():122622. PubMed ID: 34364431 [TBL] [Abstract][Full Text] [Related]
14. MicroRNA detection using lateral flow nucleic acid strips with gold nanoparticles. Hou SY; Hsiao YL; Lin MS; Yen CC; Chang CS Talanta; 2012 Sep; 99():375-9. PubMed ID: 22967567 [TBL] [Abstract][Full Text] [Related]
15. Target-triggering multiple-cycle amplification strategy for ultrasensitive detection of adenosine based on surface plasma resonance techniques. Yao GH; Liang RP; Yu XD; Huang CF; Zhang L; Qiu JD Anal Chem; 2015 Jan; 87(2):929-36. PubMed ID: 25494977 [TBL] [Abstract][Full Text] [Related]
16. Double-loop hairpin probe and doxorubicin-loaded gold nanoparticles for the ultrasensitive electrochemical sensing of microRNA. Tao Y; Yin D; Jin M; Fang J; Dai T; Li Y; Li Y; Pu Q; Xie G Biosens Bioelectron; 2017 Oct; 96():99-105. PubMed ID: 28475957 [TBL] [Abstract][Full Text] [Related]
17. Increased stability of mercapto alkane functionalized Au nanoparticles towards DNA sensing. Jans H; Stakenborg T; Jans K; Van de Broek B; Peeters S; Bonroy K; Lagae L; Borghs G; Maes G Nanotechnology; 2010 Jul; 21(28):285608. PubMed ID: 20585165 [TBL] [Abstract][Full Text] [Related]
19. Au NPs-enhanced surface plasmon resonance for sensitive detection of mercury(II) ions. Wang L; Li T; Du Y; Chen C; Li B; Zhou M; Dong S Biosens Bioelectron; 2010 Aug; 25(12):2622-6. PubMed ID: 20547052 [TBL] [Abstract][Full Text] [Related]
20. Rapid and sensitive detection of microRNA via the capture of fluorescent dyes-loaded albumin nanoparticles around functionalized magnetic beads. Wei T; Du D; Wang Z; Zhang W; Lin Y; Dai Z Biosens Bioelectron; 2017 Aug; 94():56-62. PubMed ID: 28257975 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]