These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 29567655)
1. 3D Deep Learning Angiography (3D-DLA) from C-arm Conebeam CT. Montoya JC; Li Y; Strother C; Chen GH AJNR Am J Neuroradiol; 2018 May; 39(5):916-922. PubMed ID: 29567655 [TBL] [Abstract][Full Text] [Related]
2. Using flow information to support 3D vessel reconstruction from rotational angiography. Waechter I; Bredno J; Weese J; Barratt DC; Hawkes DJ Med Phys; 2008 Jul; 35(7):3302-16. PubMed ID: 18697555 [TBL] [Abstract][Full Text] [Related]
3. Automated OCT angiography image quality assessment using a deep learning algorithm. Lauermann JL; Treder M; Alnawaiseh M; Clemens CR; Eter N; Alten F Graefes Arch Clin Exp Ophthalmol; 2019 Aug; 257(8):1641-1648. PubMed ID: 31119426 [TBL] [Abstract][Full Text] [Related]
4. Deep Learning-based Angiogram Generation Model for Cerebral Angiography without Misregistration Artifacts. Ueda D; Katayama Y; Yamamoto A; Ichinose T; Arima H; Watanabe Y; Walston SL; Tatekawa H; Takita H; Honjo T; Shimazaki A; Kabata D; Ichida T; Goto T; Miki Y Radiology; 2021 Jun; 299(3):675-681. PubMed ID: 33787336 [TBL] [Abstract][Full Text] [Related]
5. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method. Zhou X; Takayama R; Wang S; Hara T; Fujita H Med Phys; 2017 Oct; 44(10):5221-5233. PubMed ID: 28730602 [TBL] [Abstract][Full Text] [Related]
6. Dual-energy CT angiography in the evaluation of intracranial aneurysms: image quality, radiation dose, and comparison with 3D rotational digital subtraction angiography. Zhang LJ; Wu SY; Niu JB; Zhang ZL; Wang HZ; Zhao YE; Chai X; Zhou CS; Lu GM AJR Am J Roentgenol; 2010 Jan; 194(1):23-30. PubMed ID: 20028901 [TBL] [Abstract][Full Text] [Related]
7. Deep convolutional neural network for segmentation of thoracic organs-at-risk using cropped 3D images. Feng X; Qing K; Tustison NJ; Meyer CH; Chen Q Med Phys; 2019 May; 46(5):2169-2180. PubMed ID: 30830685 [TBL] [Abstract][Full Text] [Related]
8. Angle-independent measure of motion for image-based gating in 3D coronary angiography. Lehmann GC; Holdsworth DW; Drangova M Med Phys; 2006 May; 33(5):1311-20. PubMed ID: 16752566 [TBL] [Abstract][Full Text] [Related]
9. Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography. Nakao T; Hanaoka S; Nomura Y; Sato I; Nemoto M; Miki S; Maeda E; Yoshikawa T; Hayashi N; Abe O J Magn Reson Imaging; 2018 Apr; 47(4):948-953. PubMed ID: 28836310 [TBL] [Abstract][Full Text] [Related]
10. Deep-learning-assisted automatic digitization of applicators in 3D CT image-based high-dose-rate brachytherapy of gynecological cancer. Jung H; Gonzalez Y; Shen C; Klages P; Albuquerque K; Jia X Brachytherapy; 2019; 18(6):841-851. PubMed ID: 31345749 [TBL] [Abstract][Full Text] [Related]
11. A deep learning method for prediction of three-dimensional dose distribution of helical tomotherapy. Liu Z; Fan J; Li M; Yan H; Hu Z; Huang P; Tian Y; Miao J; Dai J Med Phys; 2019 May; 46(5):1972-1983. PubMed ID: 30870586 [TBL] [Abstract][Full Text] [Related]
12. Metal artifact reduction on cervical CT images by deep residual learning. Huang X; Wang J; Tang F; Zhong T; Zhang Y Biomed Eng Online; 2018 Nov; 17(1):175. PubMed ID: 30482231 [TBL] [Abstract][Full Text] [Related]
13. Training of a deep learning based digital subtraction angiography method using synthetic data. Duan L; Eulig E; Knaup M; Adamus R; Lell M; Kachelrieß M Med Phys; 2024 Jul; 51(7):4793-4810. PubMed ID: 38353632 [TBL] [Abstract][Full Text] [Related]
14. MR-based treatment planning in radiation therapy using a deep learning approach. Liu F; Yadav P; Baschnagel AM; McMillan AB J Appl Clin Med Phys; 2019 Mar; 20(3):105-114. PubMed ID: 30861275 [TBL] [Abstract][Full Text] [Related]
15. MR-based synthetic CT generation using a deep convolutional neural network method. Han X Med Phys; 2017 Apr; 44(4):1408-1419. PubMed ID: 28192624 [TBL] [Abstract][Full Text] [Related]
16. An application of cascaded 3D fully convolutional networks for medical image segmentation. Roth HR; Oda H; Zhou X; Shimizu N; Yang Y; Hayashi Y; Oda M; Fujiwara M; Misawa K; Mori K Comput Med Imaging Graph; 2018 Jun; 66():90-99. PubMed ID: 29573583 [TBL] [Abstract][Full Text] [Related]
17. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818 [TBL] [Abstract][Full Text] [Related]
18. Quantitative evaluation of measurement accuracy for three-dimensional angiography system using various phantoms. Yamura M; Hirai T; Korogi Y; Ikushima I; Yamashita Y Radiat Med; 2005 May; 23(3):175-81. PubMed ID: 15940064 [TBL] [Abstract][Full Text] [Related]
19. High quality imaging from sparsely sampled computed tomography data with deep learning and wavelet transform in various domains. Lee D; Choi S; Kim HJ Med Phys; 2019 Jan; 46(1):104-115. PubMed ID: 30362117 [TBL] [Abstract][Full Text] [Related]
20. A deep learning method for eliminating head motion artifacts in computed tomography. Su B; Wen Y; Liu Y; Liao S; Fu J; Quan G; Li Z Med Phys; 2022 Jan; 49(1):411-419. PubMed ID: 34786714 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]