These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 29567712)
1. A single fungal MAP kinase controls plant cell-to-cell invasion by the rice blast fungus. Sakulkoo W; Osés-Ruiz M; Oliveira Garcia E; Soanes DM; Littlejohn GR; Hacker C; Correia A; Valent B; Talbot NJ Science; 2018 Mar; 359(6382):1399-1403. PubMed ID: 29567712 [TBL] [Abstract][Full Text] [Related]
2. The appressorium of the rice blast fungus Magnaporthe oryzae remains mitotically active during post-penetration hyphal growth. Jenkinson CB; Jones K; Zhu J; Dorhmi S; Khang CH Fungal Genet Biol; 2017 Jan; 98():35-38. PubMed ID: 27890626 [TBL] [Abstract][Full Text] [Related]
3. Phosphodiesterase MoPdeH targets MoMck1 of the conserved mitogen-activated protein (MAP) kinase signalling pathway to regulate cell wall integrity in rice blast fungus Magnaporthe oryzae. Yin Z; Tang W; Wang J; Liu X; Yang L; Gao C; Zhang J; Zhang H; Zheng X; Wang P; Zhang Z Mol Plant Pathol; 2016 Jun; 17(5):654-68. PubMed ID: 27193947 [TBL] [Abstract][Full Text] [Related]
4. Thioredoxins are involved in the activation of the PMK1 MAP kinase pathway during appressorium penetration and invasive growth in Magnaporthe oryzae. Zhang S; Jiang C; Zhang Q; Qi L; Li C; Xu JR Environ Microbiol; 2016 Nov; 18(11):3768-3784. PubMed ID: 27059015 [TBL] [Abstract][Full Text] [Related]
5. Investigating the biology of plant infection by the rice blast fungus Magnaporthe oryzae. Martin-Urdiroz M; Oses-Ruiz M; Ryder LS; Talbot NJ Fungal Genet Biol; 2016 May; 90():61-68. PubMed ID: 26703899 [TBL] [Abstract][Full Text] [Related]
6. Rise of a Cereal Killer: The Biology of Magnaporthe oryzae Biotrophic Growth. Fernandez J; Orth K Trends Microbiol; 2018 Jul; 26(7):582-597. PubMed ID: 29395728 [TBL] [Abstract][Full Text] [Related]
7. Genome-wide transcriptional profiling of appressorium development by the rice blast fungus Magnaporthe oryzae. Soanes DM; Chakrabarti A; Paszkiewicz KH; Dawe AL; Talbot NJ PLoS Pathog; 2012 Feb; 8(2):e1002514. PubMed ID: 22346750 [TBL] [Abstract][Full Text] [Related]
8. Evidence for a transketolase-mediated metabolic checkpoint governing biotrophic growth in rice cells by the blast fungus Magnaporthe oryzae. Fernandez J; Marroquin-Guzman M; Wilson RA PLoS Pathog; 2014 Sep; 10(9):e1004354. PubMed ID: 25188286 [TBL] [Abstract][Full Text] [Related]
9. PKA activity is essential for relieving the suppression of hyphal growth and appressorium formation by MoSfl1 in Magnaporthe oryzae. Li Y; Zhang X; Hu S; Liu H; Xu JR PLoS Genet; 2017 Aug; 13(8):e1006954. PubMed ID: 28806765 [TBL] [Abstract][Full Text] [Related]
10. Two PAK kinase genes, CHM1 and MST20, have distinct functions in Magnaporthe grisea. Li L; Xue C; Bruno K; Nishimura M; Xu JR Mol Plant Microbe Interact; 2004 May; 17(5):547-56. PubMed ID: 15141959 [TBL] [Abstract][Full Text] [Related]
11. Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Wilson RA; Talbot NJ Nat Rev Microbiol; 2009 Mar; 7(3):185-95. PubMed ID: 19219052 [TBL] [Abstract][Full Text] [Related]
12. Investigating the cell biology of plant infection by the rice blast fungus Magnaporthe oryzae. Yan X; Talbot NJ Curr Opin Microbiol; 2016 Dec; 34():147-153. PubMed ID: 27816794 [TBL] [Abstract][Full Text] [Related]
13. PDE1 encodes a P-type ATPase involved in appressorium-mediated plant infection by the rice blast fungus Magnaporthe grisea. Balhadère PV; Talbot NJ Plant Cell; 2001 Sep; 13(9):1987-2004. PubMed ID: 11549759 [TBL] [Abstract][Full Text] [Related]
14. TOR-autophagy branch signaling via Imp1 dictates plant-microbe biotrophic interface longevity. Sun G; Elowsky C; Li G; Wilson RA PLoS Genet; 2018 Nov; 14(11):e1007814. PubMed ID: 30462633 [TBL] [Abstract][Full Text] [Related]
15. Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice. Wu J; Kou Y; Bao J; Li Y; Tang M; Zhu X; Ponaya A; Xiao G; Li J; Li C; Song MY; Cumagun CJ; Deng Q; Lu G; Jeon JS; Naqvi NI; Zhou B New Phytol; 2015 Jun; 206(4):1463-75. PubMed ID: 25659573 [TBL] [Abstract][Full Text] [Related]
16. The Role of Cell Wall Degrading Enzymes in Pathogenesis of Magnaporthe oryzae. Quoc NB; Chau NNB Curr Protein Pept Sci; 2017; 18(10):1019-1034. PubMed ID: 27526928 [TBL] [Abstract][Full Text] [Related]
17. Common genetic pathways regulate organ-specific infection-related development in the rice blast fungus. Tucker SL; Besi MI; Galhano R; Franceschetti M; Goetz S; Lenhert S; Osbourn A; Sesma A Plant Cell; 2010 Mar; 22(3):953-72. PubMed ID: 20348434 [TBL] [Abstract][Full Text] [Related]
18. Characterizing roles for the glutathione reductase, thioredoxin reductase and thioredoxin peroxidase-encoding genes of Magnaporthe oryzae during rice blast disease. Fernandez J; Wilson RA PLoS One; 2014; 9(1):e87300. PubMed ID: 24475267 [TBL] [Abstract][Full Text] [Related]
19. Visualizing the Movement of Magnaporthe oryzae Effector Proteins in Rice Cells During Infection. Jones K; Khang CH Methods Mol Biol; 2018; 1848():103-117. PubMed ID: 30182232 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous RNA-seq analysis of a mixed transcriptome of rice and blast fungus interaction. Kawahara Y; Oono Y; Kanamori H; Matsumoto T; Itoh T; Minami E PLoS One; 2012; 7(11):e49423. PubMed ID: 23139845 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]