These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 29567712)
21. MoRad6-mediated ubiquitination pathways are essential for development and pathogenicity in Magnaporthe oryzae. Shi HB; Chen GQ; Chen YP; Dong B; Lu JP; Liu XH; Lin FC Environ Microbiol; 2016 Nov; 18(11):4170-4187. PubMed ID: 27581713 [TBL] [Abstract][Full Text] [Related]
22. Secreted protein MoHrip2 is required for full virulence of Magnaporthe oryzae and modulation of rice immunity. Nie H; Zhang L; Zhuang H; Yang X; Qiu D; Zeng H Appl Microbiol Biotechnol; 2019 Aug; 103(15):6153-6167. PubMed ID: 31154490 [TBL] [Abstract][Full Text] [Related]
23. The Magnaporthe oryzae nitrooxidative stress response suppresses rice innate immunity during blast disease. Marroquin-Guzman M; Hartline D; Wright JD; Elowsky C; Bourret TJ; Wilson RA Nat Microbiol; 2017 Apr; 2():17054. PubMed ID: 28418377 [TBL] [Abstract][Full Text] [Related]
24. A MYST family histone acetyltransferase, MoSAS3, is required for development and pathogenicity in the rice blast fungus. Dubey A; Lee J; Kwon S; Lee YH; Jeon J Mol Plant Pathol; 2019 Nov; 20(11):1491-1505. PubMed ID: 31364260 [TBL] [Abstract][Full Text] [Related]
26. The Paxillin MoPax1 Activates Mitogen-Activated Protein (MAP) Kinase Signaling Pathways and Autophagy through MAP Kinase Activator MoMka1 during Appressorium-Mediated Plant Infection by the Rice Blast Fungus Magnaporthe oryzae. Lv W; Xiao Y; Xu Z; Jiang H; Tong Q; Wang Z mBio; 2022 Dec; 13(6):e0221822. PubMed ID: 36314807 [TBL] [Abstract][Full Text] [Related]
27. Live-cell imaging of rice cytological changes reveals the importance of host vacuole maintenance for biotrophic invasion by blast fungus, Magnaporthe oryzae. Mochizuki S; Minami E; Nishizawa Y Microbiologyopen; 2015 Dec; 4(6):952-66. PubMed ID: 26472068 [TBL] [Abstract][Full Text] [Related]
28. Overexpression of Wang C; Li C; Duan G; Wang Y; Zhang Y; Yang J Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31557947 [TBL] [Abstract][Full Text] [Related]
29. A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea. Zhao X; Kim Y; Park G; Xu JR Plant Cell; 2005 Apr; 17(4):1317-29. PubMed ID: 15749760 [TBL] [Abstract][Full Text] [Related]
30. Effectors and environment modulating rice blast disease: from understanding to effective control. Kou Y; Shi H; Qiu J; Tao Z; Wang W Trends Microbiol; 2024 Oct; 32(10):1007-1020. PubMed ID: 38580607 [TBL] [Abstract][Full Text] [Related]
31. Assays for MAP Kinase Activation in Magnaporthe oryzae and Other Plant Pathogenic Fungi. Zhang X; Bian Z; Xu JR Methods Mol Biol; 2018; 1848():93-101. PubMed ID: 30182231 [TBL] [Abstract][Full Text] [Related]
32. Endoplasmic reticulum membrane-bound MoSec62 is involved in the suppression of rice immunity and is essential for the pathogenicity of Magnaporthe oryzae. Zhou Z; Pang Z; Li G; Lin C; Wang J; Lv Q; He C; Zhu L Mol Plant Pathol; 2016 Oct; 17(8):1211-22. PubMed ID: 26679839 [TBL] [Abstract][Full Text] [Related]
33. Investigating the cell and developmental biology of plant infection by the rice blast fungus Magnaporthe oryzae. Eseola AB; Ryder LS; Osés-Ruiz M; Findlay K; Yan X; Cruz-Mireles N; Molinari C; Garduño-Rosales M; Talbot NJ Fungal Genet Biol; 2021 Sep; 154():103562. PubMed ID: 33882359 [TBL] [Abstract][Full Text] [Related]
34. Pathogen effectors and plant immunity determine specialization of the blast fungus to rice subspecies. Liao J; Huang H; Meusnier I; Adreit H; Ducasse A; Bonnot F; Pan L; He X; Kroj T; Fournier E; Tharreau D; Gladieux P; Morel JB Elife; 2016 Dec; 5():. PubMed ID: 28008850 [TBL] [Abstract][Full Text] [Related]
35. Rice blast fungus (Magnaporthe oryzae) infects Arabidopsis via a mechanism distinct from that required for the infection of rice. Park JY; Jin J; Lee YW; Kang S; Lee YH Plant Physiol; 2009 Jan; 149(1):474-86. PubMed ID: 18987215 [TBL] [Abstract][Full Text] [Related]
36. Live-cell fluorescence imaging to investigate the dynamics of plant cell death during infection by the rice blast fungus Magnaporthe oryzae. Jones K; Kim DW; Park JS; Khang CH BMC Plant Biol; 2016 Mar; 16():69. PubMed ID: 27000073 [TBL] [Abstract][Full Text] [Related]
37. PAF104, a synthetic peptide to control rice blast disease by blocking appressorium formation in Magnaporthe oryzae. Rebollar A; López-García B Mol Plant Microbe Interact; 2013 Dec; 26(12):1407-16. PubMed ID: 23902261 [TBL] [Abstract][Full Text] [Related]
38. The phosphorylation landscape of infection-related development by the rice blast fungus. Cruz-Mireles N; Osés-Ruiz M; Derbyshire P; Jégousse C; Ryder LS; Bautista MJA; Eseola A; Sklenar J; Tang B; Yan X; Ma W; Findlay KC; Were V; MacLean D; Talbot NJ; Menke FLH Cell; 2024 May; 187(10):2557-2573.e18. PubMed ID: 38729111 [TBL] [Abstract][Full Text] [Related]
39. MoFap7, a ribosome assembly factor, is required for fungal development and plant colonization of Li L; Zhu XM; Shi HB; Feng XX; Liu XH; Lin FC Virulence; 2019 Dec; 10(1):1047-1063. PubMed ID: 31814506 [TBL] [Abstract][Full Text] [Related]
40. Investigation of the biological roles of autophagy in appressorium morphogenesis in Magnaporthe oryzae. Liu XH; Lin FC J Zhejiang Univ Sci B; 2008 Oct; 9(10):793-6. PubMed ID: 18837106 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]