BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 29567766)

  • 1. Pivotal role of NAMPT in the switch of melanoma cells toward an invasive and drug-resistant phenotype.
    Ohanna M; Cerezo M; Nottet N; Bille K; Didier R; Beranger G; Mograbi B; Rocchi S; Yvan-Charvet L; Ballotti R; Bertolotto C
    Genes Dev; 2018 Mar; 32(5-6):448-461. PubMed ID: 29567766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nicotinamide Phosphoribosyltransferase (NAMPT) as a Therapeutic Target in BRAF-Mutated Metastatic Melanoma.
    Audrito V; Managò A; La Vecchia S; Zamporlini F; Vitale N; Baroni G; Cignetto S; Serra S; Bologna C; Stingi A; Arruga F; Vaisitti T; Massi D; Mandalà M; Raffaelli N; Deaglio S
    J Natl Cancer Inst; 2018 Mar; 110(3):. PubMed ID: 29309612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Key role of nicotinamide phosphoribosyltransferase (NAMPT) and NAD metabolism in the transition of melanoma cells to an invasive and drug-resistant phenotype].
    Bertolotto C; Ohanna M; Ballotti R
    Med Sci (Paris); 2018 Dec; 34(12):1025-1028. PubMed ID: 30623759
    [No Abstract]   [Full Text] [Related]  

  • 4. Targeting NAD+ salvage pathway induces autophagy in multiple myeloma cells via mTORC1 and extracellular signal-regulated kinase (ERK1/2) inhibition.
    Cea M; Cagnetta A; Fulciniti M; Tai YT; Hideshima T; Chauhan D; Roccaro A; Sacco A; Calimeri T; Cottini F; Jakubikova J; Kong SY; Patrone F; Nencioni A; Gobbi M; Richardson P; Munshi N; Anderson KC
    Blood; 2012 Oct; 120(17):3519-29. PubMed ID: 22955917
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Lucena-Cacace A; Otero-Albiol D; Jiménez-García MP; Muñoz-Galvan S; Carnero A
    Clin Cancer Res; 2018 Mar; 24(5):1202-1215. PubMed ID: 29203587
    [No Abstract]   [Full Text] [Related]  

  • 6. The NAMPT/E2F2/SIRT1 axis promotes proliferation and inhibits p53-dependent apoptosis in human melanoma cells.
    Zhao H; Tang W; Chen X; Wang S; Wang X; Xu H; Li L
    Biochem Biophys Res Commun; 2017 Nov; 493(1):77-84. PubMed ID: 28919418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of novel resistance mechanisms to NAMPT inhibition via the de novo NAD
    Guo J; Lam LT; Longenecker KL; Bui MH; Idler KB; Glaser KB; Wilsbacher JL; Tse C; Pappano WN; Huang TH
    Biochem Biophys Res Commun; 2017 Sep; 491(3):681-686. PubMed ID: 28756225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of the nicotinamide adenine dinucleotide (NAD) salvage pathway, to target glioma heterogeneity through mitochondrial oxidative stress.
    Sharma P; Xu J; Williams K; Easley M; Elder JB; Lonser R; Lang FF; Lapalombella R; Sampath D; Puduvalli VK
    Neuro Oncol; 2022 Feb; 24(2):229-244. PubMed ID: 34260721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nicotinamide phosphoribosyltransferase promotes epithelial-to-mesenchymal transition as a soluble factor independent of its enzymatic activity.
    Soncini D; Caffa I; Zoppoli G; Cea M; Cagnetta A; Passalacqua M; Mastracci L; Boero S; Montecucco F; Sociali G; Lasigliè D; Damonte P; Grozio A; Mannino E; Poggi A; D'Agostino VG; Monacelli F; Provenzani A; Odetti P; Ballestrero A; Bruzzone S; Nencioni A
    J Biol Chem; 2014 Dec; 289(49):34189-204. PubMed ID: 25331943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nicotinamide phosphoribosyltransferase (NAMPT) is over-expressed in melanoma lesions.
    Maldi E; Travelli C; Caldarelli A; Agazzone N; Cintura S; Galli U; Scatolini M; Ostano P; Miglino B; Chiorino G; Boldorini R; Genazzani AA
    Pigment Cell Melanoma Res; 2013 Jan; 26(1):144-6. PubMed ID: 23051650
    [No Abstract]   [Full Text] [Related]  

  • 11. Tumors carrying BRAF-mutations over-express NAMPT that is genetically amplified and possesses oncogenic properties.
    Audrito V; Moiso E; Ugolini F; Messana VG; Brandimarte L; Manfredonia I; Bianchi S; De Logu F; Nassini R; Szumera-Ciećkiewicz A; Taverna D; Massi D; Deaglio S
    J Transl Med; 2022 Mar; 20(1):118. PubMed ID: 35272691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinal toxicity, in vivo and in vitro, associated with inhibition of nicotinamide phosphoribosyltransferase.
    Zabka TS; Singh J; Dhawan P; Liederer BM; Oeh J; Kauss MA; Xiao Y; Zak M; Lin T; McCray B; La N; Nguyen T; Beyer J; Farman C; Uppal H; Dragovich PS; O'Brien T; Sampath D; Misner DL
    Toxicol Sci; 2015 Mar; 144(1):163-72. PubMed ID: 25505128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supplementation of nicotinic acid with NAMPT inhibitors results in loss of in vivo efficacy in NAPRT1-deficient tumor models.
    O'Brien T; Oeh J; Xiao Y; Liang X; Vanderbilt A; Qin A; Yang L; Lee LB; Ly J; Cosino E; LaCap JA; Ogasawara A; Williams S; Nannini M; Liederer BM; Jackson P; Dragovich PS; Sampath D
    Neoplasia; 2013 Dec; 15(12):1314-29. PubMed ID: 24403854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nicotinic Acid Phosphoribosyltransferase Regulates Cancer Cell Metabolism, Susceptibility to NAMPT Inhibitors, and DNA Repair.
    Piacente F; Caffa I; Ravera S; Sociali G; Passalacqua M; Vellone VG; Becherini P; Reverberi D; Monacelli F; Ballestrero A; Odetti P; Cagnetta A; Cea M; Nahimana A; Duchosal M; Bruzzone S; Nencioni A
    Cancer Res; 2017 Jul; 77(14):3857-3869. PubMed ID: 28507103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nicotinamide phosphoribosyltransferase can affect metastatic activity and cell adhesive functions by regulating integrins in breast cancer.
    Santidrian AF; LeBoeuf SE; Wold ED; Ritland M; Forsyth JS; Felding BH
    DNA Repair (Amst); 2014 Nov; 23():79-87. PubMed ID: 25263164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of nicotinamide phosphoribosyltransferase expression by miR-154 reduces the viability of breast cancer cells and increases their susceptibility to doxorubicin.
    Bolandghamat Pour Z; Nourbakhsh M; Mousavizadeh K; Madjd Z; Ghorbanhosseini SS; Abdolvahabi Z; Hesari Z; Ezzati Mobasser S
    BMC Cancer; 2019 Nov; 19(1):1027. PubMed ID: 31675930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An NAD+-dependent transcriptional program governs self-renewal and radiation resistance in glioblastoma.
    Gujar AD; Le S; Mao DD; Dadey DY; Turski A; Sasaki Y; Aum D; Luo J; Dahiya S; Yuan L; Rich KM; Milbrandt J; Hallahan DE; Yano H; Tran DD; Kim AH
    Proc Natl Acad Sci U S A; 2016 Dec; 113(51):E8247-E8256. PubMed ID: 27930300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An autophagy-driven pathway of ATP secretion supports the aggressive phenotype of BRAF
    Martin S; Dudek-Peric AM; Garg AD; Roose H; Demirsoy S; Van Eygen S; Mertens F; Vangheluwe P; Vankelecom H; Agostinis P
    Autophagy; 2017 Sep; 13(9):1512-1527. PubMed ID: 28722539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The NAD(+) salvage pathway modulates cancer cell viability via p73.
    Sharif T; Ahn DG; Liu RZ; Pringle E; Martell E; Dai C; Nunokawa A; Kwak M; Clements D; Murphy JP; Dean C; Marcato P; McCormick C; Godbout R; Gujar SA; Lee PW
    Cell Death Differ; 2016 Apr; 23(4):669-80. PubMed ID: 26586573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-proliferation effect of APO866 on C6 glioblastoma cells by inhibiting nicotinamide phosphoribosyltransferase.
    Zhang LY; Liu LY; Qie LL; Ling KN; Xu LH; Wang F; Fang SH; Lu YB; Hu H; Wei EQ; Zhang WP
    Eur J Pharmacol; 2012 Jan; 674(2-3):163-70. PubMed ID: 22119381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.