BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 29567976)

  • 1. SpliceDetector: a software for detection of alternative splicing events in human and model organisms directly from transcript IDs.
    Baharlou Houreh M; Ghorbani Kalkhajeh P; Niazi A; Ebrahimi F; Ebrahimie E
    Sci Rep; 2018 Mar; 8(1):5063. PubMed ID: 29567976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Read-Split-Run: an improved bioinformatics pipeline for identification of genome-wide non-canonical spliced regions using RNA-Seq data.
    Bai Y; Kinne J; Donham B; Jiang F; Ding L; Hassler JR; Kaufman RJ
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):503. PubMed ID: 27556805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ASD: the Alternative Splicing Database.
    Thanaraj TA; Stamm S; Clark F; Riethoven JJ; Le Texier V; Muilu J
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D64-9. PubMed ID: 14681360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TassDB2 - A comprehensive database of subtle alternative splicing events.
    Sinha R; Lenser T; Jahn N; Gausmann U; Friedel S; Szafranski K; Huse K; Rosenstiel P; Hampe J; Schuster S; Hiller M; Backofen R; Platzer M
    BMC Bioinformatics; 2010 Apr; 11():216. PubMed ID: 20429909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ASAP II database: analysis and comparative genomics of alternative splicing in 15 animal species.
    Kim N; Alekseyenko AV; Roy M; Lee C
    Nucleic Acids Res; 2007 Jan; 35(Database issue):D93-8. PubMed ID: 17108355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep RNA sequencing reveals a high frequency of alternative splicing events in the fungus Trichoderma longibrachiatum.
    Xie BB; Li D; Shi WL; Qin QL; Wang XW; Rong JC; Sun CY; Huang F; Zhang XY; Dong XW; Chen XL; Zhou BC; Zhang YZ; Song XY
    BMC Genomics; 2015 Feb; 16(1):54. PubMed ID: 25652134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MutSpliceDB: A database of splice sites variants with RNA-seq based evidence on effects on splicing.
    Palmisano A; Vural S; Zhao Y; Sonkin D
    Hum Mutat; 2021 Apr; 42(4):342-345. PubMed ID: 33600011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finding alternative splicing patterns with strong support from expressed sequences on individual exons/introns.
    Wong TK; Lam TW; Yang W; Yiu SM
    J Bioinform Comput Biol; 2008 Oct; 6(5):1021-33. PubMed ID: 18942164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Alternative splicing--principles, functional consequences and therapeutic implications].
    Heyd F
    Dtsch Med Wochenschr; 2014 Feb; 139(7):339-42. PubMed ID: 24226838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs.
    Zhang XO; Dong R; Zhang Y; Zhang JL; Luo Z; Zhang J; Chen LL; Yang L
    Genome Res; 2016 Sep; 26(9):1277-87. PubMed ID: 27365365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ASPicDB: a database resource for alternative splicing analysis.
    Castrignanò T; D'Antonio M; Anselmo A; Carrabino D; D'Onorio De Meo A; D'Erchia AM; Licciulli F; Mangiulli M; Mignone F; Pavesi G; Picardi E; Riva A; Rizzi R; Bonizzoni P; Pesole G
    Bioinformatics; 2008 May; 24(10):1300-4. PubMed ID: 18388144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Information for the Coordinates of Exons (ICE): a human splice sites database.
    Chong A; Zhang G; Bajic VB
    Genomics; 2004 Oct; 84(4):762-6. PubMed ID: 15475254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting Splicing from Primary Sequence with Deep Learning.
    Jaganathan K; Kyriazopoulou Panagiotopoulou S; McRae JF; Darbandi SF; Knowles D; Li YI; Kosmicki JA; Arbelaez J; Cui W; Schwartz GB; Chow ED; Kanterakis E; Gao H; Kia A; Batzoglou S; Sanders SJ; Farh KK
    Cell; 2019 Jan; 176(3):535-548.e24. PubMed ID: 30661751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA-Seq Analysis of Differential Splice Junction Usage and Intron Retentions by DEXSeq.
    Li Y; Rao X; Mattox WW; Amos CI; Liu B
    PLoS One; 2015; 10(9):e0136653. PubMed ID: 26327458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery and analysis of evolutionarily conserved intronic splicing regulatory elements.
    Yeo GW; Van Nostrand EL; Liang TY
    PLoS Genet; 2007 May; 3(5):e85. PubMed ID: 17530930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of alternative initiation, splicing, and termination on the diversity of the mRNA transcripts encoded by the mouse transcriptome.
    Zavolan M; Kondo S; Schonbach C; Adachi J; Hume DA; Hayashizaki Y; Gaasterland T; ;
    Genome Res; 2003 Jun; 13(6B):1290-300. PubMed ID: 12819126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A sequence-based, deep learning model accurately predicts RNA splicing branchpoints.
    Paggi JM; Bejerano G
    RNA; 2018 Dec; 24(12):1647-1658. PubMed ID: 30224349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deciphering targeting rules of splicing modulator compounds: case of TG003.
    Sakuma M; Iida K; Hagiwara M
    BMC Mol Biol; 2015 Sep; 16():16. PubMed ID: 26400733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Splicing of constitutive upstream introns is essential for the recognition of intra-exonic suboptimal splice sites in the thrombopoietin gene.
    Romano M; Marcucci R; Baralle FE
    Nucleic Acids Res; 2001 Feb; 29(4):886-94. PubMed ID: 11160920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating alternative splicing detection into gene prediction.
    Foissac S; Schiex T
    BMC Bioinformatics; 2005 Feb; 6():25. PubMed ID: 15705189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.