BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 29568158)

  • 1. Degradable, Dendritic Polyols on a Branched Polyphosphazene Backbone.
    Linhardt A; König M; Iturmendi A; Henke H; Brüggemann O; Teasdale I
    Ind Eng Chem Res; 2018 Mar; 57(10):3602-3609. PubMed ID: 29568158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyphosphazene Based Star-Branched and Dendritic Molecular Brushes.
    Henke H; Posch S; Brüggemann O; Teasdale I
    Macromol Rapid Commun; 2016 May; 37(9):769-74. PubMed ID: 27027404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generational Biodegradable and Regenerative Polyphosphazene Polymers and their Blends with Poly (lactic-co-glycolic acid).
    Ogueri KS; Allcock HR; Laurencin CT
    Prog Polym Sci; 2019 Nov; 98():. PubMed ID: 31551636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Branched Macromolecular Architectures for Degradable, Multifunctional Phosphorus-Based Polymers.
    Henke H; Brüggemann O; Teasdale I
    Macromol Rapid Commun; 2017 Feb; 38(4):. PubMed ID: 28044384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Branched Polyphosphazenes with Controlled Dimensions.
    Henke H; Wilfert S; Iturmendi A; Brüggemann O; Teasdale I
    J Polym Sci A Polym Chem; 2013 Oct; 51(20):4467-4473. PubMed ID: 24729656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water-Soluble, Biocompatible Polyphosphazenes with Controllable and pH-Promoted Degradation Behavior.
    Wilfert S; Iturmendi A; Schoefberger W; Kryeziu K; Heffeter P; Berger W; Brüggemann O; Teasdale I
    J Polym Sci A Polym Chem; 2014 Jan; 52(2):287-294. PubMed ID: 24729657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation Responsive Polymers with a Triggered Degradation via Arylboronate Self-Immolative Motifs on a Polyphosphazene Backbone.
    Iturmendi A; Monkowius U; Teasdale I
    ACS Macro Lett; 2017 Feb; 6(2):150-154. PubMed ID: 28251035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphazene Cyclomatrix Network-Based Polymer: Chemistry, Synthesis, and Applications.
    Ahmad M; Nawaz T; Hussain I; Chen X; Imran M; Hussain R; Assiri MA; Ali S; Wu Z
    ACS Omega; 2022 Aug; 7(33):28694-28707. PubMed ID: 36033672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coumarin-Caged Polyphosphazenes with a Visible-Light Driven On-Demand Degradation.
    Iturmendi A; Theis S; Maderegger D; Monkowius U; Teasdale I
    Macromol Rapid Commun; 2018 Sep; 39(18):e1800377. PubMed ID: 30048024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable polymers. I. Synthesis of hydrolysis-sensitive poly[(organo)phosphazenes].
    Crommen JH; Schacht EH; Mense EH
    Biomaterials; 1992; 13(8):511-20. PubMed ID: 1633224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, Physicochemical Analysis, and Side Group Optimization of Degradable Dipeptide-Based Polyphosphazenes as Potential Regenerative Biomaterials.
    Ogueri KS; Escobar Ivirico JL; Li Z; Blumenfield RH; Allcock HR; Laurencin CT
    ACS Appl Polym Mater; 2019 Jun; 1(6):1568-1578. PubMed ID: 32699835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyphosphazenes: Multifunctional, Biodegradable Vehicles for Drug and Gene Delivery.
    Teasdale I; Brüggemann O
    Polymers (Basel); 2013 Mar; 5(1):161-187. PubMed ID: 24729871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable Polyphosphazene Based Peptide-Polymer Hybrids.
    Linhardt A; König M; Schöfberger W; Brüggemann O; Andrianov AK; Teasdale I
    Polymers (Basel); 2016 Apr; 8(4):. PubMed ID: 30979252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hetero and homo α,ω-chain-end functionalized polyphosphazenes.
    Strasser P; Plavcan O; Ajvazi E; Henke H; Brüggemann O; Teasdale I
    J Polym Sci (2020); 2022 Jul; 60(13):2000-2007. PubMed ID: 35915665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo biodegradability and biocompatibility evaluation of novel alanine ester based polyphosphazenes in a rat model.
    Sethuraman S; Nair LS; El-Amin S; Farrar R; Nguyen MT; Singh A; Allcock HR; Greish YE; Brown PW; Laurencin CT
    J Biomed Mater Res A; 2006 Jun; 77(4):679-87. PubMed ID: 16514601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyphosphazene polymers: The next generation of biomaterials for regenerative engineering and therapeutic drug delivery.
    Ogueri KS; Ogueri KS; Allcock HR; Laurencin CT
    J Vac Sci Technol B Nanotechnol Microelectron; 2020 May; 38(3):030801. PubMed ID: 32309041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Branched multifunctional polyether polyketals: variation of ketal group structure enables unprecedented control over polymer degradation in solution and within cells.
    Shenoi RA; Narayanannair JK; Hamilton JL; Lai BF; Horte S; Kainthan RK; Varghese JP; Rajeev KG; Manoharan M; Kizhakkedathu JN
    J Am Chem Soc; 2012 Sep; 134(36):14945-57. PubMed ID: 22906064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of side group chemistry on the properties of biodegradable L-alanine cosubstituted polyphosphazenes.
    Singh A; Krogman NR; Sethuraman S; Nair LS; Sturgeon JL; Brown PW; Laurencin CT; Allcock HR
    Biomacromolecules; 2006 Mar; 7(3):914-8. PubMed ID: 16529431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and optimization of polyphosphazene functionalized fiber matrices for soft tissue regeneration.
    Peach MS; Kumbar SG; James R; Toti US; Balasubramaniam D; Deng M; Ulery B; Mazzocca AD; McCarthy MB; Morozowich NL; Allcock HR; Laurencin CT
    J Biomed Nanotechnol; 2012 Feb; 8(1):107-24. PubMed ID: 22515099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supramolecular dendritic polymers: from synthesis to applications.
    Dong R; Zhou Y; Zhu X
    Acc Chem Res; 2014 Jul; 47(7):2006-16. PubMed ID: 24779892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.