These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 29568228)
1. Dissecting the complex regulation of lodging resistance in Miller CN; Harper AL; Trick M; Wellner N; Werner P; Waldron KW; Bancroft I Mol Breed; 2018; 38(3):30. PubMed ID: 29568228 [TBL] [Abstract][Full Text] [Related]
2. Elucidation of the genetic basis of variation for stem strength characteristics in bread wheat by Associative Transcriptomics. Miller CN; Harper AL; Trick M; Werner P; Waldron K; Bancroft I BMC Genomics; 2016 Jul; 17():500. PubMed ID: 27423334 [TBL] [Abstract][Full Text] [Related]
3. An Integration of Genome-Wide Association Study and Gene Co-expression Network Analysis Identifies Candidate Genes of Stem Lodging-Related Traits in Li H; Cheng X; Zhang L; Hu J; Zhang F; Chen B; Xu K; Gao G; Li H; Li L; Huang Q; Li Z; Yan G; Wu X Front Plant Sci; 2018; 9():796. PubMed ID: 29946333 [TBL] [Abstract][Full Text] [Related]
4. Analysing the genetic architecture of clubroot resistance variation in Hejna O; Havlickova L; He Z; Bancroft I; Curn V Mol Breed; 2019; 39(8):112. PubMed ID: 31396013 [TBL] [Abstract][Full Text] [Related]
5. A new method for assessing plant lodging and the impact of management options on lodging in canola crop production. Wu W; Ma BL Sci Rep; 2016 Aug; 6():31890. PubMed ID: 27552909 [TBL] [Abstract][Full Text] [Related]
6. Integrating biochemical and anatomical characterizations with transcriptome analysis to dissect superior stem strength of ZS11 ( Tian Z; Wang X; Dun X; Tian Z; Zhang X; Li J; Ren L; Tu J; Wang H Front Plant Sci; 2023; 14():1144892. PubMed ID: 37229131 [TBL] [Abstract][Full Text] [Related]
7. Enhancement of Lodging Resistance and Lignin Content by Application of Organic Carbon and Silicon Fertilization in Hu Y; Javed HH; Asghar MA; Peng X; Brestic M; Skalický M; Ghafoor AZ; Cheema HN; Zhang FF; Wu YC Front Plant Sci; 2022; 13():807048. PubMed ID: 35251081 [TBL] [Abstract][Full Text] [Related]
8. Molecular Mapping of QTLs Associated with Lodging Resistance in Dry Direct-Seeded Rice ( Yadav S; Singh UM; Naik SM; Venkateshwarlu C; Ramayya PJ; Raman KA; Sandhu N; Kumar A Front Plant Sci; 2017; 8():1431. PubMed ID: 28871266 [TBL] [Abstract][Full Text] [Related]
9. Assessing the level of collinearity between Arabidopsis thaliana and Brassica napus for A. thaliana chromosome 5. Parkin IA; Lydiate DJ; Trick M Genome; 2002 Apr; 45(2):356-66. PubMed ID: 11962633 [TBL] [Abstract][Full Text] [Related]
10. Mapping a major QTL responsible for dwarf architecture in Brassica napus using a single-nucleotide polymorphism marker approach. Wang Y; Chen W; Chu P; Wan S; Yang M; Wang M; Guan R BMC Plant Biol; 2016 Aug; 16(1):178. PubMed ID: 27538713 [TBL] [Abstract][Full Text] [Related]
11. Diverse regulatory factors associate with flowering time and yield responses in winter-type Brassica napus. Schiessl S; Iniguez-Luy F; Qian W; Snowdon RJ BMC Genomics; 2015 Sep; 16():737. PubMed ID: 26419915 [TBL] [Abstract][Full Text] [Related]
12. Data in support of genetic architecture of glucosinolate variations in Kittipol V; He Z; Wang L; Doheny-Adams T; Langer S; Bancroft I Data Brief; 2019 Aug; 25():104402. PubMed ID: 31497635 [TBL] [Abstract][Full Text] [Related]
13. Validation of an updated Associative Transcriptomics platform for the polyploid crop species Brassica napus by dissection of the genetic architecture of erucic acid and tocopherol isoform variation in seeds. Havlickova L; He Z; Wang L; Langer S; Harper AL; Kaur H; Broadley MR; Gegas V; Bancroft I Plant J; 2018 Jan; 93(1):181-192. PubMed ID: 29124814 [TBL] [Abstract][Full Text] [Related]
14. Lodging Resistance of Japonica Rice (Oryza Sativa L.): Morphological and Anatomical Traits due to top-Dressing Nitrogen Application Rates. Zhang W; Wu L; Wu X; Ding Y; Li G; Li J; Weng F; Liu Z; Tang S; Ding C; Wang S Rice (N Y); 2016 Dec; 9(1):31. PubMed ID: 27369289 [TBL] [Abstract][Full Text] [Related]
15. Conserved and novel responses to cytokinin treatments during flower and fruit development in Brassica napus and Arabidopsis thaliana. Zuñiga-Mayo VM; Baños-Bayardo CR; Díaz-Ramírez D; Marsch-Martínez N; de Folter S Sci Rep; 2018 May; 8(1):6836. PubMed ID: 29717220 [TBL] [Abstract][Full Text] [Related]
16. Morphological, transcriptomics and biochemical characterization of new dwarf mutant of Brassica napus. Wei C; Zhu L; Wen J; Yi B; Ma C; Tu J; Shen J; Fu T Plant Sci; 2018 May; 270():97-113. PubMed ID: 29576090 [TBL] [Abstract][Full Text] [Related]
18. [The discovery and genetic analysis of dwarf mutation 99CDAM in Brassica napus L]. Mei DS; Wang HZ; Li YC; Hu Q; Li YD; Xu YS Yi Chuan; 2006 Jul; 28(7):851-7. PubMed ID: 16825174 [TBL] [Abstract][Full Text] [Related]
19. [Stem characteristics of different wheat varieties and its relationship with lodging-resistance.]. Wang D; Ding WH; Feng SW; Hu TZ; Li G; Li XH; Yang YY; Ru ZG Ying Yong Sheng Tai Xue Bao; 2016 May; 27(5):1496-1502. PubMed ID: 29732811 [TBL] [Abstract][Full Text] [Related]
20. Shading Contributes to the Reduction of Stem Mechanical Strength by Decreasing Cell Wall Synthesis in Japonica Rice ( Wu L; Zhang W; Ding Y; Zhang J; Cambula ED; Weng F; Liu Z; Ding C; Tang S; Chen L; Wang S; Li G Front Plant Sci; 2017; 8():881. PubMed ID: 28611803 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]