These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 29568311)
1. Enhanced Ant Colony Optimization with Dynamic Mutation and Ad Hoc Initialization for Improving the Design of TSK-Type Fuzzy System. Chen CC; Liu YT Comput Intell Neurosci; 2018; 2018():9485478. PubMed ID: 29568311 [TBL] [Abstract][Full Text] [Related]
2. FITSK: online local learning with generic fuzzy input Takagi-Sugeno-Kang fuzzy framework for nonlinear system estimation. Quah KH; Quek C IEEE Trans Syst Man Cybern B Cybern; 2006 Feb; 36(1):166-78. PubMed ID: 16468575 [TBL] [Abstract][Full Text] [Related]
3. Identification and prediction of dynamic systems using an interactively recurrent self-evolving fuzzy neural network. Lin YY; Chang JY; Lin CT IEEE Trans Neural Netw Learn Syst; 2013 Feb; 24(2):310-21. PubMed ID: 24808284 [TBL] [Abstract][Full Text] [Related]
4. A novel efficient learning algorithm for self-generating fuzzy neural network with applications. Liu F; Er MJ Int J Neural Syst; 2012 Feb; 22(1):21-35. PubMed ID: 22262522 [TBL] [Abstract][Full Text] [Related]
5. On the stability of interval type-2 TSK fuzzy logic control systems. Biglarbegian M; Melek WW; Mendel JM IEEE Trans Syst Man Cybern B Cybern; 2010 Jun; 40(3):798-818. PubMed ID: 19884090 [TBL] [Abstract][Full Text] [Related]
7. Application of hydrologic forecast model. Hua X; Hengxin X; Zhiguo C Water Sci Technol; 2012; 66(2):239-46. PubMed ID: 22699326 [TBL] [Abstract][Full Text] [Related]
8. Convergence analysis of sparse TSK fuzzy systems based on spectral Dai-Yuan conjugate gradient and application to high-dimensional feature selection. Ji D; Fan Q; Dong Q; Liu Y Neural Netw; 2024 Nov; 179():106599. PubMed ID: 39142176 [TBL] [Abstract][Full Text] [Related]
9. A Deep-Ensemble-Level-Based Interpretable Takagi-Sugeno-Kang Fuzzy Classifier for Imbalanced Data. Wang G; Zhou T; Choi KS; Lu J IEEE Trans Cybern; 2022 May; 52(5):3805-3818. PubMed ID: 32946410 [TBL] [Abstract][Full Text] [Related]
10. Development of quantum-based adaptive neuro-fuzzy networks. Kim SS; Kwak KC IEEE Trans Syst Man Cybern B Cybern; 2010 Feb; 40(1):91-100. PubMed ID: 19622441 [TBL] [Abstract][Full Text] [Related]
11. Prediction and identification using wavelet-based recurrent fuzzy neural networks. Lin CJ; Chin CC IEEE Trans Syst Man Cybern B Cybern; 2004 Oct; 34(5):2144-54. PubMed ID: 15503511 [TBL] [Abstract][Full Text] [Related]
12. Data-driven interval type-2 neural fuzzy system with high learning accuracy and improved model interpretability. Juang CF; Chen CY IEEE Trans Cybern; 2013 Dec; 43(6):1781-95. PubMed ID: 24273147 [TBL] [Abstract][Full Text] [Related]
13. TSK fuzzy function approximators: design and accuracy analysis. Sonbol AH; Fadali MS; Jafarzadeh S IEEE Trans Syst Man Cybern B Cybern; 2012 Jun; 42(3):702-12. PubMed ID: 22155964 [TBL] [Abstract][Full Text] [Related]
14. A novel blood glucose regulation using TSK0-FCMAC: a fuzzy CMAC based on the zero-ordered TSK fuzzy inference scheme. Ting CW; Quek C IEEE Trans Neural Netw; 2009 May; 20(5):856-71. PubMed ID: 19304482 [TBL] [Abstract][Full Text] [Related]
15. Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics. Wai RJ; Yang ZW IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1326-46. PubMed ID: 18784015 [TBL] [Abstract][Full Text] [Related]
16. Hybrid compensation control for affine TSK fuzzy control systems. Hsiao CC; Su SF; Lee TT; Chuang CC IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1865-73. PubMed ID: 15462451 [TBL] [Abstract][Full Text] [Related]
17. A two-stage evolutionary process for designing TSK fuzzy rule-based systems. Cordon O; Herrera F IEEE Trans Syst Man Cybern B Cybern; 1999; 29(6):703-15. PubMed ID: 18252351 [TBL] [Abstract][Full Text] [Related]
18. Liquid temperature prediction in bubbly flow using ant colony optimization algorithm in the fuzzy inference system as a trainer. Babanezhad M; Behroyan I; Nakhjiri AT; Marjani A; Heydarinasab A; Shirazian S Sci Rep; 2020 Dec; 10(1):21884. PubMed ID: 33318542 [TBL] [Abstract][Full Text] [Related]
19. KAT: A Knowledge Adversarial Training Method for Zero-Order Takagi-Sugeno-Kang Fuzzy Classifiers. Qin B; Chung FL; Wang S IEEE Trans Cybern; 2022 Jul; 52(7):6857-6871. PubMed ID: 33284765 [TBL] [Abstract][Full Text] [Related]
20. T2FELA: type-2 fuzzy extreme learning algorithm for fast training of interval type-2 TSK fuzzy logic system. Deng Z; Choi KS; Cao L; Wang S IEEE Trans Neural Netw Learn Syst; 2014 Apr; 25(4):664-76. PubMed ID: 24807945 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]