These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 29568323)

  • 1. OCTAL: Optimal Completion of gene trees in polynomial time.
    Christensen S; Molloy EK; Vachaspati P; Warnow T
    Algorithms Mol Biol; 2018; 13():6. PubMed ID: 29568323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-parametric correction of estimated gene trees using TRACTION.
    Christensen S; Molloy EK; Vachaspati P; Yammanuru A; Warnow T
    Algorithms Mol Biol; 2020; 15():1. PubMed ID: 31911812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical and Practical Considerations when using Retroelement Insertions to Estimate Species Trees in the Anomaly Zone.
    Molloy EK; Gatesy J; Springer MS
    Syst Biol; 2022 Apr; 71(3):721-740. PubMed ID: 34677617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linear-time algorithms for phylogenetic tree completion under Robinson-Foulds distance.
    Bansal MS
    Algorithms Mol Biol; 2020; 15():6. PubMed ID: 32313549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Weighted ASTRID: fast and accurate species trees from weighted internode distances.
    Liu B; Warnow T
    Algorithms Mol Biol; 2023 Jul; 18(1):6. PubMed ID: 37468904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inferring species trees from incongruent multi-copy gene trees using the Robinson-Foulds distance.
    Chaudhary R; Burleigh JG; Fernández-Baca D
    Algorithms Mol Biol; 2013 Nov; 8(1):28. PubMed ID: 24180377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Linear Time Solution to the Labeled Robinson-Foulds Distance Problem.
    Briand S; Dessimoz C; El-Mabrouk N; Nevers Y
    Syst Biol; 2022 Oct; 71(6):1391-1403. PubMed ID: 35426933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The performance of coalescent-based species tree estimation methods under models of missing data.
    Nute M; Chou J; Molloy EK; Warnow T
    BMC Genomics; 2018 May; 19(Suppl 5):286. PubMed ID: 29745854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring Optimal Species Trees in the Presence of Gene Duplication and Loss: Beyond Rooted Gene Trees.
    Bayzid MS
    J Comput Biol; 2023 Feb; 30(2):161-175. PubMed ID: 36251762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. To Include or Not to Include: The Impact of Gene Filtering on Species Tree Estimation Methods.
    Molloy EK; Warnow T
    Syst Biol; 2018 Mar; 67(2):285-303. PubMed ID: 29029338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees.
    Zhang C; Rabiee M; Sayyari E; Mirarab S
    BMC Bioinformatics; 2018 May; 19(Suppl 6):153. PubMed ID: 29745866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expected pairwise congruence among gene trees under the coalescent model.
    Tian Y; Kubatko LS
    Mol Phylogenet Evol; 2017 Jan; 106():144-150. PubMed ID: 27693467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are the duplication cost and Robinson-Foulds distance equivalent?
    Zheng Y; Zhang L
    J Comput Biol; 2014 Aug; 21(8):578-90. PubMed ID: 24988427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical inconsistency of the unrooted minimize deep coalescence criterion.
    Alanzi AAR; Degnan JH
    PLoS One; 2021; 16(5):e0251107. PubMed ID: 33970931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Counting and sampling gene family evolutionary histories in the duplication-loss and duplication-loss-transfer models.
    Chauve C; Ponty Y; Wallner M
    J Math Biol; 2020 Apr; 80(5):1353-1388. PubMed ID: 32060618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-allele species reconstruction using ASTRAL.
    Rabiee M; Sayyari E; Mirarab S
    Mol Phylogenet Evol; 2019 Jan; 130():286-296. PubMed ID: 30393186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quartet Based Gene Tree Imputation Using Deep Learning Improves Phylogenomic Analyses Despite Missing Data.
    Mahbub S; Sawmya S; Saha A; Reaz R; Rahman MS; Bayzid MS
    J Comput Biol; 2022 Nov; 29(11):1156-1172. PubMed ID: 36048555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inferring rooted species trees from unrooted gene trees using approximate Bayesian computation.
    Alanzi ARA; Degnan JH
    Mol Phylogenet Evol; 2017 Nov; 116():13-24. PubMed ID: 28780022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating optimal species trees from incomplete gene trees under deep coalescence.
    Bayzid MS; Warnow T
    J Comput Biol; 2012 Jun; 19(6):591-605. PubMed ID: 22697236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. "Correcting" Gene Trees to be More Like Species Trees Frequently Increases Topological Error.
    Yan Z; Ogilvie HA; Nakhleh L
    Genome Biol Evol; 2023 Jun; 15(6):. PubMed ID: 37243541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.