These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 29568435)

  • 1. Influence of axle length on the rate and mechanism of shuttling in rigid H-shaped [2]rotaxanes.
    Gholami G; Zhu K; Baggi G; Schott E; Zarate X; Loeb SJ
    Chem Sci; 2017 Nov; 8(11):7718-7723. PubMed ID: 29568435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Weinreb Amide, Ketone and Amine as Potential and Competitive Secondary Molecular Stations for Dibenzo-[24]Crown-8 in [2]Rotaxane Molecular Shuttles.
    Gauthier M; Coutrot F
    Chemistry; 2021 Dec; 27(70):17576-17580. PubMed ID: 34738683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical Distinction between "Slow" and "Fast" Translational Motion in Degenerate Molecular Shuttles.
    Vukotic VN; Zhu K; Baggi G; Loeb SJ
    Angew Chem Int Ed Engl; 2017 May; 56(22):6136-6141. PubMed ID: 28145633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cationic and Neutral Rotaxanes Having Different Functional Groups in the Axle Molecule and Their Coordination to Pt
    Yu G; Suzaki Y; Osakada K
    Chem Asian J; 2017 Feb; 12(3):372-377. PubMed ID: 27973709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A translationally active ligand based on a [2]rotaxane molecular shuttle with a 2,2'-bipyridyl core.
    Dhara A; Dmitrienko A; Hussein RN; Sotomayor A; Wilson BH; Loeb SJ
    Chem Sci; 2023 Jul; 14(26):7215-7220. PubMed ID: 37416700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent effects on the motion of a crown ether/amino rotaxane.
    Wu Z; Wang S; Zhang Z; Zhang Y; Yin Y; Shi H; Jiao S
    RSC Adv; 2022 Oct; 12(47):30495-30500. PubMed ID: 36337980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A musclelike [2](2)rotaxane: synthesis, performance, and molecular dynamics simulations.
    Li H; Li X; Wu Y; Agren H; Qu DH
    J Org Chem; 2014 Aug; 79(15):6996-7004. PubMed ID: 25028771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-benzyltriazolium as both molecular station and barrier in [2]rotaxane molecular machines.
    Busseron E; Coutrot F
    J Org Chem; 2013 Apr; 78(8):4099-106. PubMed ID: 23521611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of incorporating Fréchet dendrons into rotaxanes and molecular shuttles containing the 1,2-bis(pyridinium)ethane⊂[24]crown-8 templating motif.
    Tramontozzi DA; Suhan ND; Eichhorn SH; Loeb SJ
    Chemistry; 2010 Apr; 16(15):4466-76. PubMed ID: 20352637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Four-State Molecular Shuttling of [2]Rotaxanes in Response to Acid/Base and Alkali-Metal Cation Stimuli.
    Kimura M; Mizuno T; Ueda M; Miyagawa S; Kawasaki T; Tokunaga Y
    Chem Asian J; 2017 Jun; 12(12):1381-1390. PubMed ID: 28409890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermally Driven Dynamics of a Rotaxane Wheel about an Imidazolium Axle inside a Metal-Organic Framework.
    Farahani N; Zhu K; O'Keefe CA; Schurko RW; Loeb SJ
    Chempluschem; 2016 Aug; 81(8):836-841. PubMed ID: 31968814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling the rate of shuttling motions in [2]rotaxanes by electrostatic interactions: a cation as solvent-tunable brake.
    Ghosh P; Federwisch G; Kogej M; Schalley CA; Haase D; Saak W; Lützen A; Gschwind RM
    Org Biomol Chem; 2005 Aug; 3(15):2691-700. PubMed ID: 16032347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shuttling dynamics in an acid-base-switchable [2]rotaxane.
    Garaudée S; Silvi S; Venturi M; Credi A; Flood AH; Stoddart JF
    Chemphyschem; 2005 Oct; 6(10):2145-52. PubMed ID: 16208757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [2]Pseudorotaxanes, [2]rotaxanes and metal-organic rotaxane frameworks containing tetra-substituted dibenzo[24]crown-8 wheels.
    Mercer DJ; Yacoub J; Zhu K; Loeb SK; Loeb SJ
    Org Biomol Chem; 2012 Aug; 10(30):6094-104. PubMed ID: 22581393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of metal-complexing macrocycle size on intramolecular movement in rotaxanes.
    Woźny M; Tomczyk KM; Więckowska A; Sutuła S; Trzybiński D; Woźniak K; Korybut-Daszkiewicz B
    Dalton Trans; 2019 May; 48(19):6546-6557. PubMed ID: 31011729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of macrocyclic polyether constitution upon ammonium ion/crown ether recognition processes.
    Cantrill SJ; Fulton DA; Heiss AM; Pease AR; Stoddart JF; White AJ; Williams DJ
    Chemistry; 2000 Jun; 6(12):2274-87. PubMed ID: 10926234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Which One is Bulkier: The 3,5-Dimethylphenyl or the 2,6-Dimethylphenyl Group? Development of Size-Complementary Molecular and Macromolecular [2]Rotaxanes.
    Sato H; Aoki D; Takata T
    Chem Asian J; 2018 Apr; 13(7):785-789. PubMed ID: 29392843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rigid, Bistable Molecular Shuttles Combining T-shaped Benzimidazolium and Y-shaped Imidazolium Recognition Sites.
    Farahani N; Zhu K; Loeb SJ
    Chemphyschem; 2016 Jun; 17(12):1875-80. PubMed ID: 26955999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reverse Anomeric Effect in Large-Amplitude Pyridinium Amide-Containing Mannosyl [2]Rotaxane Molecular Shuttles.
    Riss-Yaw B; Waelès P; Coutrot F
    Chemphyschem; 2016 Jun; 17(12):1860-9. PubMed ID: 27062432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axle length does not affect switching dynamics in degenerate molecular shuttles with rigid spacers.
    Young PG; Hirose K; Tobe Y
    J Am Chem Soc; 2014 Jun; 136(22):7899-906. PubMed ID: 24813375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.