These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 29568568)

  • 1. Series of screening compounds with high hit rates for the exploration of multi-target activities and assay interference.
    Stumpfe D; Gilberg E; Bajorath J
    Future Sci OA; 2018 Mar; 4(3):FSO279. PubMed ID: 29568568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards a systematic assessment of assay interference: Identification of extensively tested compounds with high assay promiscuity.
    Gilberg E; Stumpfe D; Bajorath J
    F1000Res; 2017; 6():. PubMed ID: 28928939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-Promiscuity Relationship Puzzles-Extensively Assayed Analogs with Large Differences in Target Annotations.
    Hu Y; Jasial S; Gilberg E; Bajorath J
    AAPS J; 2017 May; 19(3):856-864. PubMed ID: 28265982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Introducing the metacore concept for multi-target ligand design.
    Stumpfe D; Hoch A; Bajorath J
    RSC Med Chem; 2021 Apr; 12(4):628-635. PubMed ID: 34046634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Safety screening in early drug discovery: An optimized assay panel.
    Bendels S; Bissantz C; Fasching B; Gerebtzoff G; Guba W; Kansy M; Migeon J; Mohr S; Peters JU; Tillier F; Wyler R; Lerner C; Kramer C; Richter H; Roberts S
    J Pharmacol Toxicol Methods; 2019; 99():106609. PubMed ID: 31284073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How Frequently Are Pan-Assay Interference Compounds Active? Large-Scale Analysis of Screening Data Reveals Diverse Activity Profiles, Low Global Hit Frequency, and Many Consistently Inactive Compounds.
    Jasial S; Hu Y; Bajorath J
    J Med Chem; 2017 May; 60(9):3879-3886. PubMed ID: 28421750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structured data sets of compounds with multi-target and corresponding single-target activity from biological assays.
    Feldmann C; Yonchev D; Bajorath J
    Future Sci OA; 2021 Mar; 7(5):FSO685. PubMed ID: 34046190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. R-group replacement database for medicinal chemistry.
    Takeuchi K; Kunimoto R; Bajorath J
    Future Sci OA; 2021 Sep; 7(8):FSO742. PubMed ID: 34295541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational method for the identification of third generation activity cliffs.
    Stumpfe D; Hu H; Bajorath J
    MethodsX; 2020; 7():100793. PubMed ID: 31993342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hit Dexter: A Machine-Learning Model for the Prediction of Frequent Hitters.
    Stork C; Wagner J; Friedrich NO; de Bruyn Kops C; Šícho M; Kirchmair J
    ChemMedChem; 2018 Mar; 13(6):564-571. PubMed ID: 29285887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computationally derived compound profiling matrices.
    Vogt M; Jasial S; Bajorath J
    Future Sci OA; 2018 Sep; 4(8):FSO327. PubMed ID: 30271615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing Molecular Promiscuity Evaluation Through Assay Profiles.
    Avram S; Curpan R; Bora A; Neanu C; Halip L
    Pharm Res; 2018 Oct; 35(11):240. PubMed ID: 30338400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determining the Degree of Promiscuity of Extensively Assayed Compounds.
    Jasial S; Hu Y; Bajorath J
    PLoS One; 2016; 11(4):e0153873. PubMed ID: 27082988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring Structural Relationships between Bioactive and Commercial Chemical Space and Developing Target Hypotheses for Compound Acquisition.
    Cerchia C; Dimova D; Lavecchia A; Bajorath J
    ACS Omega; 2017 Nov; 2(11):7760-7766. PubMed ID: 30023563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational design of new molecular scaffolds for medicinal chemistry, part II: generalization of analog series-based scaffolds.
    Dimova D; Stumpfe D; Bajorath J
    Future Sci OA; 2018 Feb; 4(2):FSO267. PubMed ID: 29379641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring Activity Profiles of PAINS and Their Structural Context in Target-Ligand Complexes.
    Siramshetty VB; Preissner R; Gohlke BO
    J Chem Inf Model; 2018 Sep; 58(9):1847-1857. PubMed ID: 30105913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consistent Cell-selective Analog Series as Constellation Luminaries in Chemical Space.
    Naveja JJ; Medina-Franco JL
    Mol Inform; 2020 Dec; 39(12):e2000061. PubMed ID: 32390313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Searchable database of frequent R-groups in medicinal chemistry and their preferred replacements.
    Takeuchi K; Kunimoto R; Bajorath J
    Data Brief; 2021 Dec; 39():107456. PubMed ID: 34692956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring structure-promiscuity relationships using dual-site promiscuity cliffs and corresponding single-site analogs.
    Hu H; Bajorath J
    Bioorg Med Chem; 2020 Jan; 28(1):115238. PubMed ID: 31818631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collection of analog series-based scaffolds from public compound sources.
    Dimova D; Bajorath J
    Future Sci OA; 2018 Apr; 4(4):FSO287. PubMed ID: 29682322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.