These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 29568809)

  • 21. Selective down-regulation of alveolar macrophage oxidative response to opsonin-independent phagocytosis.
    Kobzik L; Godleski JJ; Brain JD
    J Immunol; 1990 Jun; 144(11):4312-9. PubMed ID: 2160498
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Risks, Release and Concentrations of Engineered Nanomaterial in the Environment.
    Giese B; Klaessig F; Park B; Kaegi R; Steinfeldt M; Wigger H; von Gleich A; Gottschalk F
    Sci Rep; 2018 Jan; 8(1):1565. PubMed ID: 29371617
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diminished inhibitory impact of ZnO nanoparticles on anaerobic fermentation by the presence of TiO
    Zhang L; Zhang Z; He X; Zheng L; Cheng S; Li Z
    Sci Total Environ; 2019 Jan; 647():313-322. PubMed ID: 30081368
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Importance of exposure dynamics of metal-based nano-ZnO, -Cu and -Pb governing the metabolic potential of soil bacterial communities.
    Zhai Y; Hunting ER; Wouterse M; Peijnenburg WJGM; Vijver MG
    Ecotoxicol Environ Saf; 2017 Nov; 145():349-358. PubMed ID: 28759764
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential infection of mononuclear phagocytes by Francisella tularensis: role of the macrophage mannose receptor.
    Schulert GS; Allen LA
    J Leukoc Biol; 2006 Sep; 80(3):563-71. PubMed ID: 16816147
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanotoxicity of engineered nanomaterials (ENMs) to environmentally relevant beneficial soil bacteria - a critical review.
    Lewis RW; Bertsch PM; McNear DH
    Nanotoxicology; 2019 Apr; 13(3):392-428. PubMed ID: 30760121
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differentially Induced Autophagy by Engineered Nanomaterial Treatment Has an Impact on Cellular Homeostasis and Cytotoxicity.
    Alcolea-Rodriguez V; Dumit VI; Ledwith R; Portela R; Bañares MA; Haase A
    Nano Lett; 2024 Sep; 24(38):11793-11799. PubMed ID: 39271139
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ecophysiological perspectives on engineered nanomaterial toxicity in fish and crustaceans.
    Callaghan NI; MacCormack TJ
    Comp Biochem Physiol C Toxicol Pharmacol; 2017 Mar; 193():30-41. PubMed ID: 28017784
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Strategies for robust and accurate experimental approaches to quantify nanomaterial bioaccumulation across a broad range of organisms.
    Petersen EJ; Mortimer M; Burgess RM; Handy R; Hanna S; Ho KT; Johnson M; Loureiro S; Selck H; Scott-Fordsmand JJ; Spurgeon D; Unrine J; van den Brink N; Wang Y; White J; Holden P
    Environ Sci Nano; 2019; 6():. PubMed ID: 31579514
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toxicity mechanism of engineered nanomaterials: Focus on mitochondria.
    Yao Y; Zhang T; Tang M
    Environ Pollut; 2024 Feb; 343():123231. PubMed ID: 38154775
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In silico analysis of nanomaterials hazard and risk.
    Cohen Y; Rallo R; Liu R; Liu HH
    Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of engineered nanomaterials: current challenges, insights and future directions.
    Lai RWS; Yeung KWY; Yung MMN; Djurišić AB; Giesy JP; Leung KMY
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3060-3077. PubMed ID: 28639026
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The impacts of metal-based engineered nanomaterial mixtures on microbial systems: A review.
    Wu S; Gaillard JF; Gray KA
    Sci Total Environ; 2021 Aug; 780():146496. PubMed ID: 34030287
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of nanosilver on various DNA lesions and HPRT gene mutations - effects of charge and surface coating.
    Huk A; Izak-Nau E; El Yamani N; Uggerud H; Vadset M; Zasonska B; Duschl A; Dusinska M
    Part Fibre Toxicol; 2015 Jul; 12():25. PubMed ID: 26204901
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Complement Receptor 3-Mediated Inhibition of Inflammasome Priming by Ras GTPase-Activating Protein During
    Hoang KV; Rajaram MVS; Curry HM; Gavrilin MA; Wewers MD; Schlesinger LS
    Front Immunol; 2018; 9():561. PubMed ID: 29632532
    [No Abstract]   [Full Text] [Related]  

  • 36. Symbiosis between nitrogen-fixing bacteria and Medicago truncatula is not significantly affected by silver and silver sulfide nanomaterials.
    Judy JD; Kirby JK; McLaughlin MJ; McNear D; Bertsch PM
    Environ Pollut; 2016 Jul; 214():731-736. PubMed ID: 27149150
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanomaterials in Plants: A Review of Hazard and Applications in the Agri-Food Sector.
    Kranjc E; Drobne D
    Nanomaterials (Basel); 2019 Jul; 9(8):. PubMed ID: 31366106
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ecological nanotoxicology: integrating nanomaterial hazard considerations across the subcellular, population, community, and ecosystems levels.
    Holden PA; Nisbet RM; Lenihan HS; Miller RJ; Cherr GN; Schimel JP; Gardea-Torresdey JL
    Acc Chem Res; 2013 Mar; 46(3):813-22. PubMed ID: 23039211
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of
    Wang Y; Adamcakova-Dodd A; Steines BR; Jing X; Salem AK; Thorne PS
    NanoImpact; 2020 Apr; 18():. PubMed ID: 32885098
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A high-throughput method to characterize the gut bacteria growth upon engineered nanomaterial treatment.
    Yang Q; Keerthisinghe TP; Tan TRJ; Cao X; Setyawati MI; DeLoid G; Ng KW; Loo SCJ; Demokritou P; Fang M
    Environ Sci Nano; 2020 Oct; 7(10):3155-3166. PubMed ID: 33101690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.