These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Risks, Release and Concentrations of Engineered Nanomaterial in the Environment. Giese B; Klaessig F; Park B; Kaegi R; Steinfeldt M; Wigger H; von Gleich A; Gottschalk F Sci Rep; 2018 Jan; 8(1):1565. PubMed ID: 29371617 [TBL] [Abstract][Full Text] [Related]
23. Diminished inhibitory impact of ZnO nanoparticles on anaerobic fermentation by the presence of TiO Zhang L; Zhang Z; He X; Zheng L; Cheng S; Li Z Sci Total Environ; 2019 Jan; 647():313-322. PubMed ID: 30081368 [TBL] [Abstract][Full Text] [Related]
24. Importance of exposure dynamics of metal-based nano-ZnO, -Cu and -Pb governing the metabolic potential of soil bacterial communities. Zhai Y; Hunting ER; Wouterse M; Peijnenburg WJGM; Vijver MG Ecotoxicol Environ Saf; 2017 Nov; 145():349-358. PubMed ID: 28759764 [TBL] [Abstract][Full Text] [Related]
25. Differential infection of mononuclear phagocytes by Francisella tularensis: role of the macrophage mannose receptor. Schulert GS; Allen LA J Leukoc Biol; 2006 Sep; 80(3):563-71. PubMed ID: 16816147 [TBL] [Abstract][Full Text] [Related]
26. Nanotoxicity of engineered nanomaterials (ENMs) to environmentally relevant beneficial soil bacteria - a critical review. Lewis RW; Bertsch PM; McNear DH Nanotoxicology; 2019 Apr; 13(3):392-428. PubMed ID: 30760121 [TBL] [Abstract][Full Text] [Related]
27. Differentially Induced Autophagy by Engineered Nanomaterial Treatment Has an Impact on Cellular Homeostasis and Cytotoxicity. Alcolea-Rodriguez V; Dumit VI; Ledwith R; Portela R; Bañares MA; Haase A Nano Lett; 2024 Sep; 24(38):11793-11799. PubMed ID: 39271139 [TBL] [Abstract][Full Text] [Related]
28. Ecophysiological perspectives on engineered nanomaterial toxicity in fish and crustaceans. Callaghan NI; MacCormack TJ Comp Biochem Physiol C Toxicol Pharmacol; 2017 Mar; 193():30-41. PubMed ID: 28017784 [TBL] [Abstract][Full Text] [Related]
29. Strategies for robust and accurate experimental approaches to quantify nanomaterial bioaccumulation across a broad range of organisms. Petersen EJ; Mortimer M; Burgess RM; Handy R; Hanna S; Ho KT; Johnson M; Loureiro S; Selck H; Scott-Fordsmand JJ; Spurgeon D; Unrine J; van den Brink N; Wang Y; White J; Holden P Environ Sci Nano; 2019; 6():. PubMed ID: 31579514 [TBL] [Abstract][Full Text] [Related]
30. Toxicity mechanism of engineered nanomaterials: Focus on mitochondria. Yao Y; Zhang T; Tang M Environ Pollut; 2024 Feb; 343():123231. PubMed ID: 38154775 [TBL] [Abstract][Full Text] [Related]
31. In silico analysis of nanomaterials hazard and risk. Cohen Y; Rallo R; Liu R; Liu HH Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971 [TBL] [Abstract][Full Text] [Related]
32. Regulation of engineered nanomaterials: current challenges, insights and future directions. Lai RWS; Yeung KWY; Yung MMN; Djurišić AB; Giesy JP; Leung KMY Environ Sci Pollut Res Int; 2018 Feb; 25(4):3060-3077. PubMed ID: 28639026 [TBL] [Abstract][Full Text] [Related]
33. The impacts of metal-based engineered nanomaterial mixtures on microbial systems: A review. Wu S; Gaillard JF; Gray KA Sci Total Environ; 2021 Aug; 780():146496. PubMed ID: 34030287 [TBL] [Abstract][Full Text] [Related]
34. Impact of nanosilver on various DNA lesions and HPRT gene mutations - effects of charge and surface coating. Huk A; Izak-Nau E; El Yamani N; Uggerud H; Vadset M; Zasonska B; Duschl A; Dusinska M Part Fibre Toxicol; 2015 Jul; 12():25. PubMed ID: 26204901 [TBL] [Abstract][Full Text] [Related]
35. Complement Receptor 3-Mediated Inhibition of Inflammasome Priming by Ras GTPase-Activating Protein During Hoang KV; Rajaram MVS; Curry HM; Gavrilin MA; Wewers MD; Schlesinger LS Front Immunol; 2018; 9():561. PubMed ID: 29632532 [No Abstract] [Full Text] [Related]
36. Symbiosis between nitrogen-fixing bacteria and Medicago truncatula is not significantly affected by silver and silver sulfide nanomaterials. Judy JD; Kirby JK; McLaughlin MJ; McNear D; Bertsch PM Environ Pollut; 2016 Jul; 214():731-736. PubMed ID: 27149150 [TBL] [Abstract][Full Text] [Related]
37. Nanomaterials in Plants: A Review of Hazard and Applications in the Agri-Food Sector. Kranjc E; Drobne D Nanomaterials (Basel); 2019 Jul; 9(8):. PubMed ID: 31366106 [TBL] [Abstract][Full Text] [Related]
39. Comparison of Wang Y; Adamcakova-Dodd A; Steines BR; Jing X; Salem AK; Thorne PS NanoImpact; 2020 Apr; 18():. PubMed ID: 32885098 [TBL] [Abstract][Full Text] [Related]
40. A high-throughput method to characterize the gut bacteria growth upon engineered nanomaterial treatment. Yang Q; Keerthisinghe TP; Tan TRJ; Cao X; Setyawati MI; DeLoid G; Ng KW; Loo SCJ; Demokritou P; Fang M Environ Sci Nano; 2020 Oct; 7(10):3155-3166. PubMed ID: 33101690 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]