These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 29568955)
1. hTERT peptide fragment GV1001 demonstrates radioprotective and antifibrotic effects through suppression of TGF‑β signaling. Chen W; Shin KH; Kim S; Shon WJ; Kim RH; Park NH; Kang MK Int J Mol Med; 2018 Jun; 41(6):3211-3220. PubMed ID: 29568955 [TBL] [Abstract][Full Text] [Related]
2. Tumor-suppressive effect of a telomerase-derived peptide by inhibiting hypoxia-induced HIF-1α-VEGF signaling axis. Kim BK; Kim BR; Lee HJ; Lee SA; Kim BJ; Kim H; Won YS; Shon WJ; Lee NR; Inn KS; Kim BJ Biomaterials; 2014 Mar; 35(9):2924-33. PubMed ID: 24411674 [TBL] [Abstract][Full Text] [Related]
3. Novel vaccine peptide GV1001 effectively blocks β-amyloid toxicity by mimicking the extra-telomeric functions of human telomerase reverse transcriptase. Park HH; Lee KY; Kim S; Lee JW; Choi NY; Lee EH; Lee YJ; Lee SH; Koh SH Neurobiol Aging; 2014 Jun; 35(6):1255-74. PubMed ID: 24439482 [TBL] [Abstract][Full Text] [Related]
4. GV1001 interacts with androgen receptor to inhibit prostate cell proliferation in benign prostatic hyperplasia by regulating expression of molecules related to epithelial-mesenchymal transition. Kim Y; Lee D; Jo H; Go C; Yang J; Kang D; Kang JS Aging (Albany NY); 2021 Feb; 13(3):3202-3217. PubMed ID: 33539321 [TBL] [Abstract][Full Text] [Related]
5. The Telomerase-Derived Anticancer Peptide Vaccine GV1001 as an Extracellular Heat Shock Protein-Mediated Cell-Penetrating Peptide. Kim H; Seo EH; Lee SH; Kim BJ Int J Mol Sci; 2016 Dec; 17(12):. PubMed ID: 27941629 [TBL] [Abstract][Full Text] [Related]
6. Neural stem cells injured by oxidative stress can be rejuvenated by GV1001, a novel peptide, through scavenging free radicals and enhancing survival signals. Park HH; Yu HJ; Kim S; Kim G; Choi NY; Lee EH; Lee YJ; Yoon MY; Lee KY; Koh SH Neurotoxicology; 2016 Jul; 55():131-141. PubMed ID: 27265016 [TBL] [Abstract][Full Text] [Related]
7. Anti-cancer effect of GV1001 for prostate cancer: function as a ligand of GnRHR. Kim JW; Yadav DK; Kim SJ; Lee MY; Park JM; Kim BS; Kim MH; Park HG; Kang KW Endocr Relat Cancer; 2019 Feb; 26(2):147-162. PubMed ID: 30400054 [TBL] [Abstract][Full Text] [Related]
8. GV1001 Induces Apoptosis by Reducing Angiogenesis in Renal Cell Carcinoma Cells Both In Vitro and In Vivo. Kim GE; Jung AR; Kim MY; Lee JB; Im JH; Lee KW; Park YH; Lee JY Urology; 2018 Mar; 113():129-137. PubMed ID: 29154986 [TBL] [Abstract][Full Text] [Related]
9. Heat shock protein-mediated cell penetration and cytosolic delivery of macromolecules by a telomerase-derived peptide vaccine. Lee SA; Kim BR; Kim BK; Kim DW; Shon WJ; Lee NR; Inn KS; Kim BJ Biomaterials; 2013 Oct; 34(30):7495-505. PubMed ID: 23827187 [TBL] [Abstract][Full Text] [Related]
10. Protective effect of peptide GV1001 against renal ischemia-reperfusion injury in mice. Koo TY; Yan JJ; Yang J Transplant Proc; 2014 May; 46(4):1117-22. PubMed ID: 24815142 [TBL] [Abstract][Full Text] [Related]
12. The Anti-Inflammatory Effect of Human Telomerase-Derived Peptide on P. gingivalis Lipopolysaccharide-Induced Inflammatory Cytokine Production and Its Mechanism in Human Dental Pulp Cells. Ko YJ; Kwon KY; Kum KY; Lee WC; Baek SH; Kang MK; Shon WJ Mediators Inflamm; 2015; 2015():385127. PubMed ID: 26604431 [TBL] [Abstract][Full Text] [Related]
13. Tracking and protection of transplanted stem cells using a ferrocenecarboxylic acid-conjugated peptide that mimics hTERT. Park HH; Lee KY; Park DW; Choi NY; Lee YJ; Son JW; Kim S; Moon C; Kim HW; Rhyu IJ; Koh SH Biomaterials; 2018 Feb; 155():80-91. PubMed ID: 29169040 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of HIV-1 reactivation by a telomerase-derived peptide in a HSP90-dependent manner. Kim H; Choi MS; Inn KS; Kim BJ Sci Rep; 2016 Jul; 6():28896. PubMed ID: 27363520 [TBL] [Abstract][Full Text] [Related]
16. The nuclear receptor constitutive androstane receptor/NR1I3 enhances the profibrotic effects of transforming growth factor β and contributes to the development of experimental dermal fibrosis. Avouac J; Palumbo-Zerr K; Ruzehaji N; Tomcik M; Zerr P; Dees C; Distler A; Beyer C; Schneider H; Distler O; Schett G; Allanore Y; Distler JH Arthritis Rheumatol; 2014 Nov; 66(11):3140-50. PubMed ID: 25155144 [TBL] [Abstract][Full Text] [Related]
17. A novel inhibitor of Smad-dependent transcriptional activation suppresses tissue fibrosis in mouse models of systemic sclerosis. Hasegawa M; Matsushita Y; Horikawa M; Higashi K; Tomigahara Y; Kaneko H; Shirasaki F; Fujimoto M; Takehara K; Sato S Arthritis Rheum; 2009 Nov; 60(11):3465-75. PubMed ID: 19877032 [TBL] [Abstract][Full Text] [Related]
18. Postnatal induction of transforming growth factor beta signaling in fibroblasts of mice recapitulates clinical, histologic, and biochemical features of scleroderma. Sonnylal S; Denton CP; Zheng B; Keene DR; He R; Adams HP; Vanpelt CS; Geng YJ; Deng JM; Behringer RR; de Crombrugghe B Arthritis Rheum; 2007 Jan; 56(1):334-44. PubMed ID: 17195237 [TBL] [Abstract][Full Text] [Related]
19. Reduction of ischaemia-reperfusion injury in a rat lung transplantation model by low-concentration GV1001. Chang JE; Kim HJ; Yi E; Jheon S; Kim K Eur J Cardiothorac Surg; 2016 Nov; 50(5):972-979. PubMed ID: 27122609 [TBL] [Abstract][Full Text] [Related]
20. Aberrant TGFβ Signaling Contributes to Altered Trophoblast Differentiation in Preeclampsia. Xu J; Sivasubramaniyam T; Yinon Y; Tagliaferro A; Ray J; Nevo O; Post M; Caniggia I Endocrinology; 2016 Feb; 157(2):883-99. PubMed ID: 26653761 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]