BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

429 related articles for article (PubMed ID: 29568981)

  • 1. Three-dimensional organization and dynamics of the genome.
    Szalaj P; Plewczynski D
    Cell Biol Toxicol; 2018 Oct; 34(5):381-404. PubMed ID: 29568981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing novel methods to image and visualize 3D genomes.
    Ma T; Chen L; Shi M; Niu J; Zhang X; Yang X; Zhanghao K; Wang M; Xi P; Jin D; Zhang M; Gao J
    Cell Biol Toxicol; 2018 Oct; 34(5):367-380. PubMed ID: 29577183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D genome and its disorganization in diseases.
    Li R; Liu Y; Hou Y; Gan J; Wu P; Li C
    Cell Biol Toxicol; 2018 Oct; 34(5):351-365. PubMed ID: 29796744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial organization of genome architecture in neuronal development and disease.
    Fujita Y; Yamashita T
    Neurochem Int; 2018 Oct; 119():49-56. PubMed ID: 28757389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription-driven genome organization: a model for chromosome structure and the regulation of gene expression tested through simulations.
    Cook PR; Marenduzzo D
    Nucleic Acids Res; 2018 Nov; 46(19):9895-9906. PubMed ID: 30239812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What's in the "fold"?
    Mehra P; Kalani A
    Life Sci; 2018 Oct; 211():118-125. PubMed ID: 30213728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional genome organization in interphase and its relation to genome function.
    Goetze S; Mateos-Langerak J; van Driel R
    Semin Cell Dev Biol; 2007 Oct; 18(5):707-14. PubMed ID: 17905616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of 3D genome organization in development and cell differentiation.
    Zheng H; Xie W
    Nat Rev Mol Cell Biol; 2019 Sep; 20(9):535-550. PubMed ID: 31197269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dynamic role of cohesin in maintaining human genome architecture.
    Agarwal A; Korsak S; Choudhury A; Plewczynski D
    Bioessays; 2023 Oct; 45(10):e2200240. PubMed ID: 37603403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated 3-Dimensional Genome Modeling Engine for data-driven simulation of spatial genome organization.
    Szałaj P; Tang Z; Michalski P; Pietal MJ; Luo OJ; Sadowski M; Li X; Radew K; Ruan Y; Plewczynski D
    Genome Res; 2016 Dec; 26(12):1697-1709. PubMed ID: 27789526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Architectural proteins for the formation and maintenance of the 3D genome.
    Li M; Gan J; Sun Y; Xu Z; Yang J; Sun Y; Li C
    Sci China Life Sci; 2020 Jun; 63(6):795-810. PubMed ID: 32249389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence-based modeling of three-dimensional genome architecture from kilobase to chromosome scale.
    Zhou J
    Nat Genet; 2022 May; 54(5):725-734. PubMed ID: 35551308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The biology and polymer physics underlying large-scale chromosome organization.
    Sazer S; Schiessel H
    Traffic; 2018 Feb; 19(2):87-104. PubMed ID: 29105235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatin dynamics governed by a set of nuclear structural proteins.
    Vivante A; Brozgol E; Bronshtein I; Levi V; Garini Y
    Genes Chromosomes Cancer; 2019 Jul; 58(7):437-451. PubMed ID: 30537111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topological domains in mammalian genomes identified by analysis of chromatin interactions.
    Dixon JR; Selvaraj S; Yue F; Kim A; Li Y; Shen Y; Hu M; Liu JS; Ren B
    Nature; 2012 Apr; 485(7398):376-80. PubMed ID: 22495300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome folding dynamics during the M-to-G1-phase transition.
    Zhang H; Blobel GA
    Curr Opin Genet Dev; 2023 Jun; 80():102036. PubMed ID: 37099832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins.
    Wutz G; Várnai C; Nagasaka K; Cisneros DA; Stocsits RR; Tang W; Schoenfelder S; Jessberger G; Muhar M; Hossain MJ; Walther N; Koch B; Kueblbeck M; Ellenberg J; Zuber J; Fraser P; Peters JM
    EMBO J; 2017 Dec; 36(24):3573-3599. PubMed ID: 29217591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A tour of 3D genome with a focus on CTCF.
    Wang DC; Wang W; Zhang L; Wang X
    Semin Cell Dev Biol; 2019 Jun; 90():4-11. PubMed ID: 30031214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring chromatin hierarchical organization via Markov State Modelling.
    Tan ZW; Guarnera E; Berezovsky IN
    PLoS Comput Biol; 2018 Dec; 14(12):e1006686. PubMed ID: 30596637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.