These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 29569301)

  • 21. The impact of water management practices on subtropical pasture methane emissions and ecosystem service payments.
    Chamberlain SD; Groffman PM; Boughton EH; Gomez-Casanovas N; DeLucia EH; Bernacchi CJ; Sparks JP
    Ecol Appl; 2017 Jun; 27(4):1199-1209. PubMed ID: 28140494
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands.
    Turetsky MR; Kotowska A; Bubier J; Dise NB; Crill P; Hornibrook ER; Minkkinen K; Moore TR; Myers-Smith IH; Nykänen H; Olefeldt D; Rinne J; Saarnio S; Shurpali N; Tuittila ES; Waddington JM; White JR; Wickland KP; Wilmking M
    Glob Chang Biol; 2014 Jul; 20(7):2183-97. PubMed ID: 24777536
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Topsoil removal reduced in-situ methane emissions in a temperate rewetted bog grassland by a hundredfold.
    Huth V; Günther A; Bartel A; Hofer B; Jacobs O; Jantz N; Meister M; Rosinski E; Urich T; Weil M; Zak D; Jurasinski G
    Sci Total Environ; 2020 Jun; 721():137763. PubMed ID: 32172119
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ecosystem-scale methane flux in tropical peat swamp forest in Indonesia.
    Sakabe A; Itoh M; Hirano T; Kusin K
    Glob Chang Biol; 2018 Nov; 24(11):5123-5136. PubMed ID: 30175421
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tundra landscape heterogeneity, not interannual variability, controls the decadal regional carbon balance in the Western Russian Arctic.
    Treat CC; Marushchak ME; Voigt C; Zhang Y; Tan Z; Zhuang Q; Virtanen TA; Räsänen A; Biasi C; Hugelius G; Kaverin D; Miller PA; Stendel M; Romanovsky V; Rivkin F; Martikainen PJ; Shurpali NJ
    Glob Chang Biol; 2018 Nov; 24(11):5188-5204. PubMed ID: 30101501
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular mechanisms of water table lowering and nitrogen deposition in affecting greenhouse gas emissions from a Tibetan alpine wetland.
    Wang H; Yu L; Zhang Z; Liu W; Chen L; Cao G; Yue H; Zhou J; Yang Y; Tang Y; He JS
    Glob Chang Biol; 2017 Feb; 23(2):815-829. PubMed ID: 27536811
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characteristics of CH
    Chen Q; Guo B; Zhao C; Xing B
    Environ Pollut; 2018 Aug; 239():289-299. PubMed ID: 29660501
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Emerging role of wetland methane emissions in driving 21st century climate change.
    Zhang Z; Zimmermann NE; Stenke A; Li X; Hodson EL; Zhu G; Huang C; Poulter B
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):9647-9652. PubMed ID: 28827347
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta.
    Knox SH; Sturtevant C; Matthes JH; Koteen L; Verfaillie J; Baldocchi D
    Glob Chang Biol; 2015 Feb; 21(2):750-65. PubMed ID: 25229180
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce-dominated ombrotrophic bog.
    Gill AL; Giasson MA; Yu R; Finzi AC
    Glob Chang Biol; 2017 Dec; 23(12):5398-5411. PubMed ID: 28675635
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbon uptake in Eurasian boreal forests dominates the high-latitude net ecosystem carbon budget.
    Watts JD; Farina M; Kimball JS; Schiferl LD; Liu Z; Arndt KA; Zona D; Ballantyne A; Euskirchen ES; Parmentier FW; Helbig M; Sonnentag O; Tagesson T; Rinne J; Ikawa H; Ueyama M; Kobayashi H; Sachs T; Nadeau DF; Kochendorfer J; Jackowicz-Korczynski M; Virkkala A; Aurela M; Commane R; Byrne B; Birch L; Johnson MS; Madani N; Rogers B; Du J; Endsley A; Savage K; Poulter B; Zhang Z; Bruhwiler LM; Miller CE; Goetz S; Oechel WC
    Glob Chang Biol; 2023 Apr; 29(7):1870-1889. PubMed ID: 36647630
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Greenhouse gas fluxes over managed grasslands in Central Europe.
    Hörtnagl L; Barthel M; Buchmann N; Eugster W; Butterbach-Bahl K; Díaz-Pinés E; Zeeman M; Klumpp K; Kiese R; Bahn M; Hammerle A; Lu H; Ladreiter-Knauss T; Burri S; Merbold L
    Glob Chang Biol; 2018 May; 24(5):1843-1872. PubMed ID: 29405521
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Net emissions of CH4 and CO2 in Alaska: implications for the region's greenhouse gas budget.
    Zhuang Q; Melillo JM; McGuire AD; Kicklighter DW; Prinn RG; Steudler PA; Felzer BS; Hu S
    Ecol Appl; 2007 Jan; 17(1):203-12. PubMed ID: 17479846
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Soil properties and sediment accretion modulate methane fluxes from restored wetlands.
    Chamberlain SD; Anthony TL; Silver WL; Eichelmann E; Hemes KS; Oikawa PY; Sturtevant C; Szutu DJ; Verfaillie JG; Baldocchi DD
    Glob Chang Biol; 2018 Sep; 24(9):4107-4121. PubMed ID: 29575340
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methane emissions reduce the radiative cooling effect of a subtropical estuarine mangrove wetland by half.
    Liu J; Zhou Y; Valach A; Shortt R; Kasak K; Rey-Sanchez C; Hemes KS; Baldocchi D; Lai DYF
    Glob Chang Biol; 2020 Sep; 26(9):4998-5016. PubMed ID: 32574398
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of environmental driving factors in historical and projected carbon dynamics of wetland ecosystems in Alaska.
    Lyu Z; Genet H; He Y; Zhuang Q; McGuire AD; Bennett A; Breen A; Clein J; Euskirchen ES; Johnson K; Kurkowski T; Pastick NJ; Rupp TS; Wylie BK; Zhu Z
    Ecol Appl; 2018 Sep; 28(6):1377-1395. PubMed ID: 29808543
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Methane oxidation in contrasting soil types: responses to experimental warming with implication for landscape-integrated CH
    D'Imperio L; Nielsen CS; Westergaard-Nielsen A; Michelsen A; Elberling B
    Glob Chang Biol; 2017 Feb; 23(2):966-976. PubMed ID: 27416869
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction CH4 Emissions from the Wetlands in the Sanjiang Plain of Northeastern China in the 21st Century.
    Li T; Zhang Q; Zhang W; Wang G; Lu Y; Yu L; Zhang R
    PLoS One; 2016; 11(7):e0158872. PubMed ID: 27409586
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Climate-driven increase of natural wetland methane emissions offset by human-induced wetland reduction in China over the past three decades.
    Zhu Q; Peng C; Liu J; Jiang H; Fang X; Chen H; Niu Z; Gong P; Lin G; Wang M; Wang H; Yang Y; Chang J; Ge Y; Xiang W; Deng X; He JS
    Sci Rep; 2016 Nov; 6():38020. PubMed ID: 27892535
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isotopic insights into methane production, oxidation, and emissions in Arctic polygon tundra.
    Vaughn LJ; Conrad ME; Bill M; Torn MS
    Glob Chang Biol; 2016 Oct; 22(10):3487-502. PubMed ID: 26990225
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.