These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

436 related articles for article (PubMed ID: 29569425)

  • 1. Comparative analysis of nanobody sequence and structure data.
    Mitchell LS; Colwell LJ
    Proteins; 2018 Jul; 86(7):697-706. PubMed ID: 29569425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Introduction to heavy chain antibodies and derived Nanobodies.
    Vincke C; Muyldermans S
    Methods Mol Biol; 2012; 911():15-26. PubMed ID: 22886243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of nanobody paratopes reveals greater diversity than classical antibodies.
    Mitchell LS; Colwell LJ
    Protein Eng Des Sel; 2018 Jul; 31(7-8):267-275. PubMed ID: 30053276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NanoBERTa-ASP: predicting nanobody paratope based on a pretrained RoBERTa model.
    Li S; Meng X; Li R; Huang B; Wang X
    BMC Bioinformatics; 2024 Mar; 25(1):122. PubMed ID: 38515052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold.
    Vincke C; Loris R; Saerens D; Martinez-Rodriguez S; Muyldermans S; Conrath K
    J Biol Chem; 2009 Jan; 284(5):3273-3284. PubMed ID: 19010777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Basis of Epitope Recognition by Heavy-Chain Camelid Antibodies.
    Zavrtanik U; Lukan J; Loris R; Lah J; Hadži S
    J Mol Biol; 2018 Oct; 430(21):4369-4386. PubMed ID: 30205092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Characterization of Nanobodies during Germline Maturation.
    Seidler CA; Kokot J; Fernández-Quintero ML; Liedl KR
    Biomolecules; 2023 Feb; 13(2):. PubMed ID: 36830754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and specificity of several triclocarban-binding single domain camelid antibody fragments.
    Tabares-da Rosa S; Wogulis LA; Wogulis MD; González-Sapienza G; Wilson DK
    J Mol Recognit; 2019 Jan; 32(1):e2755. PubMed ID: 30033524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A single-domain antibody fragment in complex with RNase A: non-canonical loop structures and nanomolar affinity using two CDR loops.
    Decanniere K; Desmyter A; Lauwereys M; Ghahroudi MA; Muyldermans S; Wyns L
    Structure; 1999 Apr; 7(4):361-70. PubMed ID: 10196124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antigen recognition by single-domain antibodies: structural latitudes and constraints.
    Henry KA; MacKenzie CR
    MAbs; 2018; 10(6):815-826. PubMed ID: 29916758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of Antibody and Nanobody Tools for P2X7.
    Stähler T; Danquah W; Demeules M; Gondé H; Hardet R; Haag F; Adriouch S; Koch-Nolte F; Menzel S
    Methods Mol Biol; 2022; 2510():99-127. PubMed ID: 35776322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Classification of CDR-H3 in Single-Domain V
    Kuroda D; Tsumoto K
    Methods Mol Biol; 2023; 2552():61-79. PubMed ID: 36346585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanobodies: natural single-domain antibodies.
    Muyldermans S
    Annu Rev Biochem; 2013; 82():775-97. PubMed ID: 23495938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antigen specificity and high affinity binding provided by one single loop of a camel single-domain antibody.
    Desmyter A; Decanniere K; Muyldermans S; Wyns L
    J Biol Chem; 2001 Jul; 276(28):26285-90. PubMed ID: 11342547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CD38-Specific Biparatopic Heavy Chain Antibodies Display Potent Complement-Dependent Cytotoxicity Against Multiple Myeloma Cells.
    Schütze K; Petry K; Hambach J; Schuster N; Fumey W; Schriewer L; Röckendorf J; Menzel S; Albrecht B; Haag F; Stortelers C; Bannas P; Koch-Nolte F
    Front Immunol; 2018; 9():2553. PubMed ID: 30524421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and Preparation of Photobodies: Light-Activated Single-Domain Antibody Fragments.
    Yilmaz Z; Jedlitzke B; Mootz HD
    Methods Mol Biol; 2022; 2446():409-424. PubMed ID: 35157286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanobodies and Nanobody-Based Human Heavy Chain Antibodies As Antitumor Therapeutics.
    Bannas P; Hambach J; Koch-Nolte F
    Front Immunol; 2017; 8():1603. PubMed ID: 29213270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated computational pipeline for designing high-affinity nanobodies with expanded genetic codes.
    Padhi AK; Kumar A; Haruna KI; Sato H; Tamura H; Nagatoishi S; Tsumoto K; Yamaguchi A; Iraha F; Takahashi M; Sakamoto K; Zhang KYJ
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34415295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physicochemical differences between camelid single-domain antibodies and mammalian antibodies.
    Eskier NE; Eskier D; Firuzan E; Uzunlar SK
    Turk J Biol; 2023; 47(6):423-436. PubMed ID: 38681780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structures of a llama VHH antibody BCD090-M2 targeting human ErbB3 receptor.
    Eliseev IE; Yudenko AN; Vysochinskaya VV; Svirina AA; Evstratyeva AV; Drozhzhachih MS; Krendeleva EA; Vladimirova AK; Nemankin TA; Ekimova VM; Ulitin AB; Lomovskaya MI; Yakovlev PA; Bukatin AS; Knyazev NA; Moiseenko FV; Chakchir OB
    F1000Res; 2018; 7():57. PubMed ID: 30430004
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 22.