These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1144 related articles for article (PubMed ID: 29569825)
1. High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize. Feng C; Su H; Bai H; Wang R; Liu Y; Guo X; Liu C; Zhang J; Yuan J; Birchler JA; Han F Plant Biotechnol J; 2018 Nov; 16(11):1848-1857. PubMed ID: 29569825 [TBL] [Abstract][Full Text] [Related]
2. Efficiency and Inheritance of Targeted Mutagenesis in Maize Using CRISPR-Cas9. Zhu J; Song N; Sun S; Yang W; Zhao H; Song W; Lai J J Genet Genomics; 2016 Jan; 43(1):25-36. PubMed ID: 26842991 [TBL] [Abstract][Full Text] [Related]
3. High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system. Wang P; Zhang J; Sun L; Ma Y; Xu J; Liang S; Deng J; Tan J; Zhang Q; Tu L; Daniell H; Jin S; Zhang X Plant Biotechnol J; 2018 Jan; 16(1):137-150. PubMed ID: 28499063 [TBL] [Abstract][Full Text] [Related]
4. Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Lee K; Zhang Y; Kleinstiver BP; Guo JA; Aryee MJ; Miller J; Malzahn A; Zarecor S; Lawrence-Dill CJ; Joung JK; Qi Y; Wang K Plant Biotechnol J; 2019 Feb; 17(2):362-372. PubMed ID: 29972722 [TBL] [Abstract][Full Text] [Related]
5. A Highly Efficient Cell Division-Specific CRISPR/Cas9 System Generates Homozygous Mutants for Multiple Genes in Feng Z; Zhang Z; Hua K; Gao X; Mao Y; Botella JR; Zhu JK Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30544514 [TBL] [Abstract][Full Text] [Related]
6. Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system. Xiong X; Liu W; Jiang J; Xu L; Huang L; Cao J Mol Genet Genomics; 2019 Oct; 294(5):1251-1261. PubMed ID: 31129735 [TBL] [Abstract][Full Text] [Related]
7. Efficient Targeted Genome Modification in Maize Using CRISPR/Cas9 System. Feng C; Yuan J; Wang R; Liu Y; Birchler JA; Han F J Genet Genomics; 2016 Jan; 43(1):37-43. PubMed ID: 26842992 [TBL] [Abstract][Full Text] [Related]
8. An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice. Toda E; Koiso N; Takebayashi A; Ichikawa M; Kiba T; Osakabe K; Osakabe Y; Sakakibara H; Kato N; Okamoto T Nat Plants; 2019 Apr; 5(4):363-368. PubMed ID: 30911123 [TBL] [Abstract][Full Text] [Related]
9. Efficient genome editing of wild strawberry genes, vector development and validation. Zhou J; Wang G; Liu Z Plant Biotechnol J; 2018 Nov; 16(11):1868-1877. PubMed ID: 29577545 [TBL] [Abstract][Full Text] [Related]
10. Genome Editing by CRISPR/Cas9 in Sorghum Through Biolistic Bombardment. Liu G; Li J; Godwin ID Methods Mol Biol; 2019; 1931():169-183. PubMed ID: 30652290 [TBL] [Abstract][Full Text] [Related]
11. An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Char SN; Neelakandan AK; Nahampun H; Frame B; Main M; Spalding MH; Becraft PW; Meyers BC; Walbot V; Wang K; Yang B Plant Biotechnol J; 2017 Feb; 15(2):257-268. PubMed ID: 27510362 [TBL] [Abstract][Full Text] [Related]
12. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Zhang H; Zhang J; Wei P; Zhang B; Gou F; Feng Z; Mao Y; Yang L; Zhang H; Xu N; Zhu JK Plant Biotechnol J; 2014 Aug; 12(6):797-807. PubMed ID: 24854982 [TBL] [Abstract][Full Text] [Related]
13. Callus-specific CRISPR/Cas9 system to increase heritable gene mutations in maize. Shi Y; Wang J; Yu T; Song R; Qi W Planta; 2024 Jun; 260(1):16. PubMed ID: 38833022 [TBL] [Abstract][Full Text] [Related]
14. Characteristic and inheritance analysis of targeted mutagenesis mediated by genome editing in rice. Tang L; Li YK; Zhang D; Mao BG; Lv QM; Hu YY; Shao Y; Peng Y; Zhao BR; Xia ST Yi Chuan; 2016 Aug; 38(8):746-55. PubMed ID: 27531613 [TBL] [Abstract][Full Text] [Related]
15. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice. Shen L; Hua Y; Fu Y; Li J; Liu Q; Jiao X; Xin G; Wang J; Wang X; Yan C; Wang K Sci China Life Sci; 2017 May; 60(5):506-515. PubMed ID: 28349304 [TBL] [Abstract][Full Text] [Related]
16. Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Osakabe Y; Watanabe T; Sugano SS; Ueta R; Ishihara R; Shinozaki K; Osakabe K Sci Rep; 2016 May; 6():26685. PubMed ID: 27226176 [TBL] [Abstract][Full Text] [Related]
17. Whole genome sequencing reveals rare off-target mutations and considerable inherent genetic or/and somaclonal variations in CRISPR/Cas9-edited cotton plants. Li J; Manghwar H; Sun L; Wang P; Wang G; Sheng H; Zhang J; Liu H; Qin L; Rui H; Li B; Lindsey K; Daniell H; Jin S; Zhang X Plant Biotechnol J; 2019 May; 17(5):858-868. PubMed ID: 30291759 [TBL] [Abstract][Full Text] [Related]
18. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology. Khan MHU; Khan SU; Muhammad A; Hu L; Yang Y; Fan C J Cell Physiol; 2018 Jun; 233(6):4578-4594. PubMed ID: 29194606 [TBL] [Abstract][Full Text] [Related]
19. Manipulating the Biosynthesis of Bioactive Compound Alkaloids for Next-Generation Metabolic Engineering in Opium Poppy Using CRISPR-Cas 9 Genome Editing Technology. Alagoz Y; Gurkok T; Zhang B; Unver T Sci Rep; 2016 Aug; 6():30910. PubMed ID: 27483984 [TBL] [Abstract][Full Text] [Related]
20. [CRISPR/Cas9-based genome editing systems and the analysis of targeted genome mutations in plants]. Ma XL; Liu YG Yi Chuan; 2016 Feb; 38(2):118-25. PubMed ID: 26907775 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]