These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 29569895)

  • 1. On the Correlation between the Microscopic Structure and Properties of Phosphate-Cross-Linked Chitosan Gels.
    Sacco P; Brun F; Donati I; Porrelli D; Paoletti S; Turco G
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10761-10770. PubMed ID: 29569895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insight into the ionotropic gelation of chitosan using tripolyphosphate and pyrophosphate as cross-linkers.
    Sacco P; Paoletti S; Cok M; Asaro F; Abrami M; Grassi M; Donati I
    Int J Biol Macromol; 2016 Nov; 92():476-483. PubMed ID: 27431794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation, structure and drug release behaviour of chitosan-based nanofibres.
    Zeng R; Tu M; Liu HW; Zhao JH; Zha ZG; Zhou CR
    IET Nanobiotechnol; 2009 Mar; 3(1):8-13. PubMed ID: 19222301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteoblastic cellular responses on ionically crosslinked chitosan-tripolyphosphate fibrous 3-D mesh scaffolds.
    Pati F; Kalita H; Adhikari B; Dhara S
    J Biomed Mater Res A; 2013 Sep; 101(9):2526-37. PubMed ID: 23359556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of porous chitosan/tripolyphosphate scaffolds with tunable uncross-linking primary amine content for bone tissue engineering.
    Xu Y; Han J; Chai Y; Yuan S; Lin H; Zhang X
    Mater Sci Eng C Mater Biol Appl; 2018 Apr; 85():182-190. PubMed ID: 29407147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionically Cross-Linked Polymer Networks for the Multiple-Month Release of Small Molecules.
    Lawrence PG; Patil PS; Leipzig ND; Lapitsky Y
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4323-35. PubMed ID: 26811936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chitosan nanoparticle as protein delivery carrier--systematic examination of fabrication conditions for efficient loading and release.
    Gan Q; Wang T
    Colloids Surf B Biointerfaces; 2007 Sep; 59(1):24-34. PubMed ID: 17555948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of chitosan-tripolyphosphate non-woven fibrous scaffolds for tissue engineering application.
    Pati F; Adhikari B; Dhara S
    J Mater Sci Mater Med; 2012 Apr; 23(4):1085-96. PubMed ID: 22311077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrosprayed bovine serum albumin-loaded tripolyphosphate cross-linked chitosan capsules: synthesis and characterization.
    Xu Y; Hanna MA
    J Microencapsul; 2007 Mar; 24(2):143-51. PubMed ID: 17454425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monovalent salt enhances colloidal stability during the formation of chitosan/tripolyphosphate microgels.
    Huang Y; Lapitsky Y
    Langmuir; 2011 Sep; 27(17):10392-9. PubMed ID: 21749043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of multivalent phosphate structure on the properties of ionically cross-linked chitosan films for controlled drug release.
    Shu XZ; Zhu KJ
    Eur J Pharm Biopharm; 2002 Sep; 54(2):235-43. PubMed ID: 12191697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique.
    Fan W; Yan W; Xu Z; Ni H
    Colloids Surf B Biointerfaces; 2012 Feb; 90():21-7. PubMed ID: 22014934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel controlled ionic gelation strategy for chitosan nanoparticles preparation using TPP-β-CD inclusion complex.
    Pant A; Negi JS
    Eur J Pharm Sci; 2018 Jan; 112():180-185. PubMed ID: 29191520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entrapment of protein in chitosan-tripolyphosphate beads and its release in an in vitro digestive model.
    Yuan D; Jacquier JC; O'Riordan ED
    Food Chem; 2017 Aug; 229():495-501. PubMed ID: 28372206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dual-application poly (dl-lactic-co-glycolic) acid (PLGA)-chitosan composite scaffold for potential use in bone tissue engineering.
    Boukari Y; Qutachi O; Scurr DJ; Morris AP; Doughty SW; Billa N
    J Biomater Sci Polym Ed; 2017 Nov; 28(16):1966-1983. PubMed ID: 28777694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetracycline release from tripolyphosphate-chitosan cross-linked sponge: a preliminary in vitro study.
    Shen EC; Wang C; Fu E; Chiang CY; Chen TT; Nieh S
    J Periodontal Res; 2008 Dec; 43(6):642-8. PubMed ID: 18624950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Injectable porous nano-hydroxyapatite/chitosan/tripolyphosphate scaffolds with improved compressive strength for bone regeneration.
    Uswatta SP; Okeke IU; Jayasuriya AC
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():505-12. PubMed ID: 27612741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chitosan in situ gelation for improved drug loading and retention in poloxamer 407 gels.
    Ur-Rehman T; Tavelin S; Gröbner G
    Int J Pharm; 2011 May; 409(1-2):19-29. PubMed ID: 21335076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and characterisation of chitosan nanoparticles for siRNA delivery.
    Katas H; Alpar HO
    J Control Release; 2006 Oct; 115(2):216-25. PubMed ID: 16959358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionically crosslinked chitosan/tripolyphosphate nanoparticles for oligonucleotide and plasmid DNA delivery.
    Csaba N; Köping-Höggård M; Alonso MJ
    Int J Pharm; 2009 Dec; 382(1-2):205-14. PubMed ID: 19660537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.