These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 29569930)

  • 1. Double Barrel Nanopores as a New Tool for Controlling Single-Molecule Transport.
    Cadinu P; Campolo G; Pud S; Yang W; Edel JB; Dekker C; Ivanov AP
    Nano Lett; 2018 Apr; 18(4):2738-2745. PubMed ID: 29569930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid-State Nanopore Single-Molecule Sensing of DNAzyme Cleavage Reaction Assisted with Nucleic Acid Nanostructure.
    Zhu L; Xu Y; Ali I; Liu L; Wu H; Lu Z; Liu Q
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26555-26565. PubMed ID: 30016075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Individually Addressable Multi-nanopores for Single-Molecule Targeted Operations.
    Cadinu P; Kang M; Nadappuram BP; Ivanov AP; Edel JB
    Nano Lett; 2020 Mar; 20(3):2012-2019. PubMed ID: 32053383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active Delivery of Single DNA Molecules into a Plasmonic Nanopore for Label-Free Optical Sensing.
    Shi X; Verschueren DV; Dekker C
    Nano Lett; 2018 Dec; 18(12):8003-8010. PubMed ID: 30460853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capture and Translocation Characteristics of Short Branched DNA Labels in Solid-State Nanopores.
    Karau P; Tabard-Cossa V
    ACS Sens; 2018 Jul; 3(7):1308-1315. PubMed ID: 29874054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.
    Cao C; Long YT
    Acc Chem Res; 2018 Feb; 51(2):331-341. PubMed ID: 29364650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Low Noise Borosilicate Glass Nanopores for Single Molecule Sensing.
    Bafna JA; Soni GV
    PLoS One; 2016; 11(6):e0157399. PubMed ID: 27285088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid-State Quad-Nanopore Array for High-Resolution Single-Molecule Analysis and Discrimination.
    Hu R; Zhu R; Wei G; Wang Z; Gu ZY; Wanunu M; Zhao Q
    Adv Mater; 2023 Jun; 35(24):e2211399. PubMed ID: 37037423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids.
    Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A
    Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tetramethylammonium-filled protein nanopore for single-molecule analysis.
    Wang Y; Yao F; Kang XF
    Anal Chem; 2015 Oct; 87(19):9991-7. PubMed ID: 26337294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased dwell time and occurrence of dsDNA translocation events through solid state nanopores by LiCl concentration gradients.
    Bello J; Mowla M; Troise N; Soyring J; Borgesi J; Shim J
    Electrophoresis; 2019 Apr; 40(7):1082-1090. PubMed ID: 30580437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic Nanopores for Single-Molecule Detection and Manipulation: Toward Sequencing Applications.
    Garoli D; Yamazaki H; Maccaferri N; Wanunu M
    Nano Lett; 2019 Nov; 19(11):7553-7562. PubMed ID: 31587559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective target protein detection using a decorated nanopore into a microfluidic device.
    Fujinami Tanimoto IM; Cressiot B; Jarroux N; Roman J; Patriarche G; Le Pioufle B; Pelta J; Bacri L
    Biosens Bioelectron; 2021 Jul; 183():113195. PubMed ID: 33857755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical Trapping of DNA in a Double-Nanopore System.
    Pud S; Chao SH; Belkin M; Verschueren D; Huijben T; van Engelenburg C; Dekker C; Aksimentiev A
    Nano Lett; 2016 Dec; 16(12):8021-8028. PubMed ID: 27960493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Translocation of Proteins through Solid-State Nanopores Using DNA Polyhedral Carriers.
    Yang J; Wang J; Liu X; Chen Y; Liang Y; Wang Q; Jiang S; Zhang C
    Small; 2023 Nov; 19(47):e2303715. PubMed ID: 37496044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving signal-to-noise performance for DNA translocation in solid-state nanopores at MHz bandwidths.
    Balan A; Machielse B; Niedzwiecki D; Lin J; Ong P; Engelke R; Shepard KL; Drndić M
    Nano Lett; 2014 Dec; 14(12):7215-20. PubMed ID: 25418589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Force-Controlled Formation of Dynamic Nanopores for Single-Biomolecule Sensing and Single-Cell Secretomics.
    Schlotter T; Weaver S; Forró C; Momotenko D; Vörös J; Zambelli T; Aramesh M
    ACS Nano; 2020 Oct; 14(10):12993-13003. PubMed ID: 32914961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated fabrication of 2-nm solid-state nanopores for nucleic acid analysis.
    Briggs K; Kwok H; Tabard-Cossa V
    Small; 2014 May; 10(10):2077-86. PubMed ID: 24585682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sapphire-supported nanopores for low-noise DNA sensing.
    Xia P; Zuo J; Paudel P; Choi S; Chen X; Rahman Laskar MA; Bai J; Song W; Im J; Wang C
    Biosens Bioelectron; 2021 Feb; 174():112829. PubMed ID: 33308962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.