These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 29570058)

  • 1. A Five-Tissue-Layer Human Body Communication Circuit Model Tunable to Individual Characteristics.
    Mao J; Yang H; Lian Y; Zhao B
    IEEE Trans Biomed Circuits Syst; 2018 Apr; 12(2):303-312. PubMed ID: 29570058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A human body model for efficient numerical characterization of UWB signal propagation in wireless body area networks.
    Lim HB; Baumann D; Li EP
    IEEE Trans Biomed Eng; 2011 Mar; 58(3):689-97. PubMed ID: 21062677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a floating-ground-electrode circuit for measuring attenuation of the human body channel.
    Zhang Y; Gao Z; Liu W; Gao Y; Du M
    Technol Health Care; 2020; 28(3):275-281. PubMed ID: 31594265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Self-Adaptive Capacitive Compensation Technique for Body Channel Communication.
    Mao J; Yang H; Lian Y; Zhao B
    IEEE Trans Biomed Circuits Syst; 2017 Oct; 11(5):1001-1012. PubMed ID: 28644812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling for intra-body communication with bone effect.
    Pun SH; Gao YM; Mak PU; Du M; Vai MI
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():693-6. PubMed ID: 19963722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate human tissue characterization for energy-efficient wireless on-body communications.
    Vallejo M; Recas J; del Valle PG; Ayala JL
    Sensors (Basel); 2013 Jun; 13(6):7546-69. PubMed ID: 23752565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wearable ECG Based on Impulse-Radio-Type Human Body Communication.
    Wang J; Fujiwara T; Kato T; Anzai D
    IEEE Trans Biomed Eng; 2016 Sep; 63(9):1887-1894. PubMed ID: 26642315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple electrical model and initial experiments for intra-body communications.
    Gao YM; Pun SH; Du M; Mak PU; Vai MI
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():697-700. PubMed ID: 19963723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of on-body communication channel and energy efficient topology design for wireless body area networks.
    Reusens E; Joseph W; Latré B; Braem B; Vermeeren G; Tanghe E; Martens L; Moerman I; Blondia C
    IEEE Trans Inf Technol Biomed; 2009 Nov; 13(6):933-45. PubMed ID: 19789118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of attenuation and dispersion through the skin in intrabody communications systems.
    Callejón MA; Roa LM; Reina-Tosina J; Naranjo-Hernández D
    IEEE Trans Inf Technol Biomed; 2012 Jan; 16(1):159-65. PubMed ID: 21997285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward energy efficient neural interfaces.
    Peng CC; Xiao Z; Bashirullah R
    IEEE Trans Biomed Eng; 2009 Nov; 56(11 Pt 2):2697-700. PubMed ID: 19709960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward Realization of 2.4 GHz Balunless Narrowband Receiver Front-End for Short Range Wireless Applications.
    El-Desouki MM; Qasim SM; BenSaleh MS; Deen MJ
    Sensors (Basel); 2015 May; 15(5):10791-805. PubMed ID: 25961380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The study and design of a wireless ECG monitoring system.
    Yang H; Chai J
    Biomed Instrum Technol; 2012; 46(5):395-9. PubMed ID: 23039742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-Body to On-Body Ultrawideband Propagation Model Derived From Measurements in Living Animals.
    Floor PA; Chávez-Santiago R; Brovoll S; Aardal Ø; Bergsland J; Grymyr OJ; Halvorsen PS; Palomar R; Plettemeier D; Hamran SE; Ramstad TA; Balasingham I
    IEEE J Biomed Health Inform; 2015 May; 19(3):938-48. PubMed ID: 25861089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signal transmission through human muscle for implantable medical devices using galvanic intra-body communication technique.
    Chen XM; Mak PU; Pun SH; Gao YM; Vai MI; Du M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1651-4. PubMed ID: 23366224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equivalent Circuit Model Viewed From Receiver Side in Human Body Communication.
    Nishida Y; Sasaki K; Yamamoto K; Muramatsu D; Koshiji F
    IEEE Trans Biomed Circuits Syst; 2019 Aug; 13(4):746-755. PubMed ID: 31135370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wireless communication systems for implantable medical devices.
    Panescu D
    IEEE Eng Med Biol Mag; 2008; 27(2):96-101. PubMed ID: 18463025
    [No Abstract]   [Full Text] [Related]  

  • 18. Wireless technologies for closed-loop retinal prostheses.
    Ng DC; Bai S; Yang J; Tran N; Skafidas E
    J Neural Eng; 2009 Dec; 6(6):065004. PubMed ID: 19850974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new transcutaneous bidirectional communication for monitoring implanted artificial heart using the human body as a conductive medium.
    Okamoto E; Kato Y; Seino K; Miura H; Shiraishi Y; Yambe T; Mitamura Y
    Artif Organs; 2012 Oct; 36(10):852-8. PubMed ID: 22812488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implementation of wireless power transfer and communications for an implantable ocular drug delivery system.
    Tang TB; Smith S; Flynn BW; Stevenson JT; Gundlach AM; Reekie HM; Murray AF; Renshaw D; Dhillon B; Ohtori A; Inoue Y; Terry JG; Walton AJ
    IET Nanobiotechnol; 2008 Sep; 2(3):72-9. PubMed ID: 19045840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.