These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 29570287)

  • 1. Uncertain Environmental Footprint of Current and Future Battery Electric Vehicles.
    Cox B; Mutel CL; Bauer C; Mendoza Beltran A; van Vuuren DP
    Environ Sci Technol; 2018 Apr; 52(8):4989-4995. PubMed ID: 29570287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental life cycle assessment of battery electric vehicles from the current and future energy mix perspective.
    Shafique M; Luo X
    J Environ Manage; 2022 Feb; 303():114050. PubMed ID: 34872799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Life cycle assessment of battery electric vehicles: Implications of future electricity mix and different battery end-of-life management.
    Koroma MS; Costa D; Philippot M; Cardellini G; Hosen MS; Coosemans T; Messagie M
    Sci Total Environ; 2022 Jul; 831():154859. PubMed ID: 35358517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles.
    Li B; Gao X; Li J; Yuan C
    Environ Sci Technol; 2014; 48(5):3047-55. PubMed ID: 24483341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review of the Fuel Saving, Life Cycle GHG Emission, and Ownership Cost Impacts of Lightweighting Vehicles with Different Powertrains.
    Luk JM; Kim HC; De Kleine R; Wallington TJ; MacLean HL
    Environ Sci Technol; 2017 Aug; 51(15):8215-8228. PubMed ID: 28714678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal vehicle size and driving condition for extended-range electric vehicles in China: A life cycle perspective.
    Liu Y; Qiao J; Xu H; Liu J; Chen Y
    PLoS One; 2020; 15(11):e0241967. PubMed ID: 33216761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The efficient operating parameter estimation for a simulated plug-in hybrid electric vehicle.
    Singh KV; Khandelwal R; Bansal HO; Singh D
    Environ Sci Pollut Res Int; 2022 Mar; 29(12):18126-18141. PubMed ID: 34676482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of the life cycle assessment of electric vehicles: Considering the influence of batteries.
    Xia X; Li P
    Sci Total Environ; 2022 Mar; 814():152870. PubMed ID: 34990672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Longitudinal safety evaluation of electric vehicles with the partial wireless charging lane on freeways.
    Li Y; Wang W; Xing L; Fan Q; Wang H
    Accid Anal Prev; 2018 Feb; 111():133-141. PubMed ID: 29197693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental implication of electric vehicles in China.
    Huo H; Zhang Q; Wang MQ; Streets DG; He K
    Environ Sci Technol; 2010 Jul; 44(13):4856-61. PubMed ID: 20496930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional Variability and Uncertainty of Electric Vehicle Life Cycle CO₂ Emissions across the United States.
    Tamayao MA; Michalek JJ; Hendrickson C; Azevedo IM
    Environ Sci Technol; 2015 Jul; 49(14):8844-55. PubMed ID: 26125323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of Li-ion batteries to the environmental impact of electric vehicles.
    Notter DA; Gauch M; Widmer R; Wäger P; Stamp A; Zah R; Althaus HJ
    Environ Sci Technol; 2010 Sep; 44(17):6550-6. PubMed ID: 20695466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smart Scheduling of Electric Vehicles Based on Reinforcement Learning.
    Viziteu A; Furtună D; Robu A; Senocico S; Cioată P; Remus Baltariu M; Filote C; Răboacă MS
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Life Cycle Assessment of Connected and Automated Vehicles: Sensing and Computing Subsystem and Vehicle Level Effects.
    Gawron JH; Keoleian GA; De Kleine RD; Wallington TJ; Kim HC
    Environ Sci Technol; 2018 Mar; 52(5):3249-3256. PubMed ID: 29446302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Comparative life cycle environmental assessment between electric taxi and gasoline taxi in Beijing].
    Shi XQ; Sun ZX; Li XN; Li JX; Yang JX
    Huan Jing Ke Xue; 2015 Mar; 36(3):1105-16. PubMed ID: 25929083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hall-effect based semi-fast AC on-board charging equipment for electric vehicles.
    Milanés-Montero MI; Gallardo-Lozano J; Romero-Cadaval E; González-Romera E
    Sensors (Basel); 2011; 11(10):9313-26. PubMed ID: 22163697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential Climate Impact Variations Due to Fueling Behavior of Plug-in Hybrid Vehicle Owners in the US.
    Wolfram P; Hertwich EG
    Environ Sci Technol; 2021 Jan; 55(1):65-72. PubMed ID: 33327721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Life cycle assessment of electric vehicles: a systematic review of literature.
    Das PK; Bhat MY; Sajith S
    Environ Sci Pollut Res Int; 2024 Jan; 31(1):73-89. PubMed ID: 38038907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of Lightweight Driver-Assistance System for Safe Driving in Electric Vehicles.
    Ahmad S; Malik S; Park DH; Kim D
    Sensors (Basel); 2019 Nov; 19(21):. PubMed ID: 31684010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen Storage for Fuel Cell Electric Vehicles: Expert Elicitation and a Levelized Cost of Driving Model.
    Whiston MM; Lima Azevedo IM; Litster S; Samaras C; Whitefoot KS; Whitacre JF
    Environ Sci Technol; 2021 Jan; 55(1):553-562. PubMed ID: 33274912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.