These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 29570287)

  • 21. Potential impacts of electric vehicles on air quality in Taiwan.
    Li N; Chen JP; Tsai IC; He Q; Chi SY; Lin YC; Fu TM
    Sci Total Environ; 2016 Oct; 566-567():919-928. PubMed ID: 27285533
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Mobile Charging Vehicle Routing Problem with Time Windows and Recharging Services.
    Cui S; Zhao H; Chen H; Zhang C
    Comput Intell Neurosci; 2018; 2018():5075916. PubMed ID: 30402083
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electric vehicles in China: emissions and health impacts.
    Ji S; Cherry CR; J Bechle M; Wu Y; Marshall JD
    Environ Sci Technol; 2012 Feb; 46(4):2018-24. PubMed ID: 22201325
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prospective time-resolved LCA of fully electric supercap vehicles in Germany.
    Zimmermann BM; Dura H; Baumann MJ; Weil MR
    Integr Environ Assess Manag; 2015 Jul; 11(3):425-34. PubMed ID: 25891858
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Current and future greenhouse gas emissions associated with electricity generation in China: implications for electric vehicles.
    Shen W; Han W; Wallington TJ
    Environ Sci Technol; 2014 Jun; 48(12):7069-75. PubMed ID: 24853334
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Economic and Environmental Feasibility of Second-Life Lithium-Ion Batteries as Fast-Charging Energy Storage.
    Kamath D; Arsenault R; Kim HC; Anctil A
    Environ Sci Technol; 2020 Jun; 54(11):6878-6887. PubMed ID: 32343124
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of regional temperature on the adoption of electric vehicles: an empirical study based on 20 provinces in China.
    Li X; Zhao X; Xue D; Tian Q
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):11443-11457. PubMed ID: 36094712
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electricity carbon intensity in European Member States: Impacts on GHG emissions of electric vehicles.
    Moro A; Lonza L
    Transp Res D Transp Environ; 2018 Oct; 64():5-14. PubMed ID: 30740029
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Environmental Impacts of Future Urban Deployment of Electric Vehicles: Assessment Framework and Case Study of Copenhagen for 2016-2030.
    Bohnes FA; Gregg JS; Laurent A
    Environ Sci Technol; 2017 Dec; 51(23):13995-14005. PubMed ID: 29120171
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Life Cycle Assessment of Solar Photovoltaic Microgrid Systems in Off-Grid Communities.
    Bilich A; Langham K; Geyer R; Goyal L; Hansen J; Krishnan A; Bergesen J; Sinha P
    Environ Sci Technol; 2017 Jan; 51(2):1043-1052. PubMed ID: 28009505
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Climate and environmental effects of electric vehicles versus compressed natural gas vehicles in China: a life-cycle analysis at provincial level.
    Huo H; Zhang Q; Liu F; He K
    Environ Sci Technol; 2013 Feb; 47(3):1711-8. PubMed ID: 23276251
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Environmental Justice Aspects of Exposure to PM2.5 Emissions from Electric Vehicle Use in China.
    Ji S; Cherry CR; Zhou W; Sawhney R; Wu Y; Cai S; Wang S; Marshall JD
    Environ Sci Technol; 2015 Dec; 49(24):13912-20. PubMed ID: 26509330
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the influence of second use, future battery technologies, and battery lifetime on the maximum recycled content of future electric vehicle batteries in Europe.
    Abdelbaky M; Peeters JR; Dewulf W
    Waste Manag; 2021 Apr; 125():1-9. PubMed ID: 33667978
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Research on carbon reduction potential of electric vehicles for low-carbon transportation and its influencing factors].
    Shi XQ; Li XN; Yang JX
    Huan Jing Ke Xue; 2013 Jan; 34(1):385-94. PubMed ID: 23487966
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Life Cycle Assessment of Vehicle Lightweighting: A Physics-Based Model To Estimate Use-Phase Fuel Consumption of Electrified Vehicles.
    Kim HC; Wallington TJ
    Environ Sci Technol; 2016 Oct; 50(20):11226-11233. PubMed ID: 27533735
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low-CO(2) electricity and hydrogen: a help or hindrance for electric and hydrogen vehicles?
    Wallington TJ; Grahn M; Anderson JE; Mueller SA; Williander MI; Lindgren K
    Environ Sci Technol; 2010 Apr; 44(7):2702-8. PubMed ID: 20187632
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Data-Driven Approach to State of Health Estimation and Prediction for a Lithium-Ion Battery Pack of Electric Buses Based on Real-World Data.
    Xu N; Xie Y; Liu Q; Yue F; Zhao D
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957319
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Emissions impacts and benefits of plug-in hybrid electric vehicles and vehicle-to-grid services.
    Sioshansi R; Denholm P
    Environ Sci Technol; 2009 Feb; 43(4):1199-204. PubMed ID: 19320180
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Idealized analysis of relative values of bidirectional versus unidirectional electric vehicle charging in deeply decarbonized electricity systems.
    Dioha MO; Ruggles TH; Ashfaq S; Caldeira K
    iScience; 2022 Sep; 25(9):104906. PubMed ID: 36060055
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Life cycle air emissions impacts and ownership costs of light-duty vehicles using natural gas as a primary energy source.
    Luk JM; Saville BA; MacLean HL
    Environ Sci Technol; 2015 Apr; 49(8):5151-60. PubMed ID: 25825338
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.