These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 29570305)

  • 1. Interaction Enthalpy of Side Chain and Backbone Amides in Polyglutamine Solution Monomers and Fibrils.
    Punihaole D; Jakubek RS; Workman RJ; Asher SA
    J Phys Chem Lett; 2018 Apr; 9(8):1944-1950. PubMed ID: 29570305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyglutamine Fibrils: New Insights into Antiparallel β-Sheet Conformational Preference and Side Chain Structure.
    Punihaole D; Workman RJ; Hong Z; Madura JD; Asher SA
    J Phys Chem B; 2016 Mar; 120(12):3012-26. PubMed ID: 26947327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monomeric Polyglutamine Structures That Evolve into Fibrils.
    Punihaole D; Jakubek RS; Workman RJ; Marbella LE; Campbell P; Madura JD; Asher SA
    J Phys Chem B; 2017 Jun; 121(24):5953-5967. PubMed ID: 28531354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. UV resonance Raman spectroscopy monitors polyglutamine backbone and side chain hydrogen bonding and fibrillization.
    Xiong K; Punihaole D; Asher SA
    Biochemistry; 2012 Jul; 51(29):5822-30. PubMed ID: 22746095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The hydrogen-bonding ability of the amino acid glutamine revealed by neutron diffraction experiments.
    Rhys NH; Soper AK; Dougan L
    J Phys Chem B; 2012 Nov; 116(45):13308-19. PubMed ID: 23083424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen bonds between short polar side chains and peptide backbone: prevalence in proteins and effects on helix-forming propensities.
    Vijayakumar M; Qian H; Zhou HX
    Proteins; 1999 Mar; 34(4):497-507. PubMed ID: 10081962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UV Resonance Raman Structural Characterization of an (In)soluble Polyglutamine Peptide.
    Jakubek RS; White SE; Asher SA
    J Phys Chem B; 2019 Feb; 123(8):1749-1763. PubMed ID: 30717595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New model for crystalline polyglutamine assemblies and their connection with amyloid fibrils.
    Sikorski P; Atkins E
    Biomacromolecules; 2005; 6(1):425-32. PubMed ID: 15638548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Mechanisms of Alzheimer's Biomarker FDDNP Binding to Aβ Amyloid Fibril.
    Parikh ND; Klimov DK
    J Phys Chem B; 2015 Sep; 119(35):11568-80. PubMed ID: 26237080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation.
    Word JM; Lovell SC; Richardson JS; Richardson DC
    J Mol Biol; 1999 Jan; 285(4):1735-47. PubMed ID: 9917408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying Interactions of Nucleobase Atoms with Model Compounds for the Peptide Backbone and Glutamine and Asparagine Side Chains in Water.
    Cheng X; Shkel IA; Molzahn C; Lambert D; Karim R; Record MT
    Biochemistry; 2018 Apr; 57(15):2227-2237. PubMed ID: 29533642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissociation of Abeta(16-22) amyloid fibrils probed by molecular dynamics.
    Takeda T; Klimov DK
    J Mol Biol; 2007 May; 368(4):1202-13. PubMed ID: 17382346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of fibrillation of hIAPP core fragments by chemical modification of the peptide backbone.
    Andreasen M; Nielsen SB; Mittag T; Bjerring M; Nielsen JT; Zhang S; Nielsen EH; Jeppesen M; Christiansen G; Besenbacher F; Dong M; Nielsen NC; Skrydstrup T; Otzen DE
    Biochim Biophys Acta; 2012 Feb; 1824(2):274-85. PubMed ID: 22064122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amyloid Fibril Solubility.
    Rizzi LG; Auer S
    J Phys Chem B; 2015 Nov; 119(46):14631-6. PubMed ID: 26496385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations of a beta-hairpin fragment of protein G: balance between side-chain and backbone forces.
    Ma B; Nussinov R
    J Mol Biol; 2000 Mar; 296(4):1091-104. PubMed ID: 10686106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural determinants of polyglutamine protofibrils and crystallites.
    Man VH; Roland C; Sagui C
    ACS Chem Neurosci; 2015 Apr; 6(4):632-45. PubMed ID: 25604626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of sidechains on the calculated dimensions of three related bacterial polysaccharides.
    Talashek TA; Brant DA
    Carbohydr Res; 1987 Feb; 160():303-16. PubMed ID: 3567995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the role of backbone hydrogen bonding in beta-amyloid fibrils with inhibitor peptides containing ester bonds at alternate positions.
    Gordon DJ; Meredith SC
    Biochemistry; 2003 Jan; 42(2):475-85. PubMed ID: 12525175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reorientation Motion and Preferential Interactions of a Peptide in Denaturants and Osmolyte.
    Jas GS; Rentchler EC; Słowicka AM; Hermansen JR; Johnson CK; Middaugh CR; Kuczera K
    J Phys Chem B; 2016 Mar; 120(12):3089-99. PubMed ID: 26967551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Backbone Engineering within a Latent β-Hairpin Structure to Design Inhibitors of Polyglutamine Amyloid Formation.
    Kar K; Baker MA; Lengyel GA; Hoop CL; Kodali R; Byeon IJ; Horne WS; van der Wel PC; Wetzel R
    J Mol Biol; 2017 Jan; 429(2):308-323. PubMed ID: 27986569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.