These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 29570457)

  • 1. A scalable and deformable stylized model of the adult human eye for radiation dose assessment.
    El Basha D; Furuta T; Iyer SSR; Bolch WE
    Phys Med Biol; 2018 May; 63(10):105017. PubMed ID: 29570457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dosimetric dependence of ocular structures on eye size and shape for external radiation fields of electrons, photons, and neutrons.
    Furuta T; Basha DE; Iyer SSR; Alfonso CMC; Bolch WE
    J Radiol Prot; 2019 Sep; 39(3):825-837. PubMed ID: 31226698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dose conversion coefficients for monoenergetic electrons incident on a realistic human eye model with different lens cell populations.
    Nogueira P; Zankl M; Schlattl H; Vaz P
    Phys Med Biol; 2011 Nov; 56(21):6919-34. PubMed ID: 21983644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron, Photon, and Neutron Dose Conversion Coefficients of Lens and Non-Lens Tissues Using a Multi-Tissue Eye Model to Assess Risk of Cataracts and Retinitis.
    Ali F; Richardson RB
    Radiat Res; 2023 Aug; 200(2):162-175. PubMed ID: 37410087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An age-dependent series of eye models for radiation dosimetry.
    Vejdani-Noghreiyan A; Ebrahimi-Khankook A
    Phys Med Biol; 2019 Jul; 64(13):135004. PubMed ID: 31071690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dose conversion coefficients for electron exposure of the human eye lens.
    Behrens R; Dietze G; Zankl M
    Phys Med Biol; 2009 Jul; 54(13):4069-87. PubMed ID: 19502705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of detailed pediatric eye models for lens dose calculations.
    Han H; Yeom YS; Nguyen TT; Choi C; Shin B; Moon S; Ha S; Son G; Augusteyn R; Kim CH
    J Radiol Prot; 2021 Jun; 41(2):. PubMed ID: 33882468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-resolution voxel phantom modeling: a high-resolution eye model for computational dosimetry.
    Caracappa PF; Rhodes A; Fiedler D
    Phys Med Biol; 2014 Sep; 59(18):5261-75. PubMed ID: 25144465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dose conversion coefficients for photon exposure of the human eye lens.
    Behrens R; Dietze G
    Phys Med Biol; 2011 Jan; 56(2):415-37. PubMed ID: 21178237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring the eye lens: which dose quantity is adequate?
    Behrens R; Dietze G
    Phys Med Biol; 2010 Jul; 55(14):4047-62. PubMed ID: 20601777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dose conversion coefficients for neutron exposure to the lens of the human eye.
    Manger RP; Bellamy MB; Eckerman KF
    Radiat Prot Dosimetry; 2012 Mar; 148(4):507-13. PubMed ID: 21531748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dose conversion coefficients for electron exposure of the human eye lens: calculations including a whole body phantom.
    Behrens R
    Radiat Prot Dosimetry; 2013 Jul; 155(2):224-35. PubMed ID: 23204559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluence to effective dose conversion coefficients calculated for monoenergetic electrons up to 200 MeV in partial exposure geometries.
    Kitaichi M; Katagiri M; Hikoji M; Iwai S; Sumiyoshi T; Sawamura S
    Radiat Prot Dosimetry; 2004; 112(3):345-58. PubMed ID: 15494361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the operational quantity H(p)(3) for eye lens dosimetry.
    Behrens R
    J Radiol Prot; 2012 Dec; 32(4):455-64. PubMed ID: 23146823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Principles for the design and calibration of radiation protection dosemeters for operational and protection quantities for eye lens dosimetry.
    Bordy JM; Gualdrini G; Daures J; Mariotti F
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):257-61. PubMed ID: 21362692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An assessment of bone marrow and bone endosteum dosimetry methods for photon sources.
    Lee C; Lee C; Shah AP; Bolch WE
    Phys Med Biol; 2006 Nov; 51(21):5391-407. PubMed ID: 17047259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CALCULATION OF THE DOSE CONVERSION COEFFICIENTS FOR CHINESE EYE LENS UNDER PHOTON EXPOSURE.
    Teng Z; Song M; Liu S; Wei K; Liu Y
    Radiat Prot Dosimetry; 2021 Dec; 197(3-4):163-174. PubMed ID: 34953467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dosimetric models of the eye and lens of the eye and their use in assessing dose coefficients for ocular exposures.
    Bolch WE; Dietze G; Petoussi-Henss N; Zankl M
    Ann ICRP; 2015 Jun; 44(1 Suppl):91-111. PubMed ID: 25816263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluence to Hp(3) conversion coefficients for neutrons from thermal to 15 MeV.
    Gualdrini G; Ferrari P; Tanner R
    Radiat Prot Dosimetry; 2013 Dec; 157(2):278-90. PubMed ID: 23671134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. COMPARISON OF MONOENERGETIC PHOTON ORGAN DOSE RATE COEFFICIENTS FOR STYLIZED AND VOXEL PHANTOMS SUBMERGED IN AIR.
    Bellamy MB; Hiller MM; Dewji SA; Veinot KG; Leggett RW; Eckerman KF; Easterly CE; Hertel NE
    Radiat Prot Dosimetry; 2016 Dec; 172(4):367-374. PubMed ID: 26838066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.