BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29570714)

  • 1. Nascent RNA signaling to yeast RNA Pol II during transcription elongation.
    Klopf E; Moes M; Amman F; Zimmermann B; von Pelchrzim F; Wagner C; Schroeder R
    PLoS One; 2018; 13(3):e0194438. PubMed ID: 29570714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Paf1 Has Distinct Roles in Transcription Elongation and Differential Transcript Fate.
    Fischl H; Howe FS; Furger A; Mellor J
    Mol Cell; 2017 Feb; 65(4):685-698.e8. PubMed ID: 28190769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA polymerase II-binding aptamers in human ACRO1 satellites disrupt transcription
    Boots JL; von Pelchrzim F; Weiss A; Zimmermann B; Friesacher T; Radtke M; Żywicki M; Chen D; Matylla-Kulińska K; Zagrovic B; Schroeder R
    Transcription; 2020 Oct; 11(5):217-229. PubMed ID: 32663063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nascent Transcript Folding Plays a Major Role in Determining RNA Polymerase Elongation Rates.
    Turowski TW; Petfalski E; Goddard BD; French SL; Helwak A; Tollervey D
    Mol Cell; 2020 Aug; 79(3):488-503.e11. PubMed ID: 32585128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subgenic Pol II interactomes identify region-specific transcription elongation regulators.
    Harlen KM; Churchman LS
    Mol Syst Biol; 2017 Jan; 13(1):900. PubMed ID: 28043953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide Analysis of RNA Polymerase II Termination at Protein-Coding Genes.
    Baejen C; Andreani J; Torkler P; Battaglia S; Schwalb B; Lidschreiber M; Maier KC; Boltendahl A; Rus P; Esslinger S; Söding J; Cramer P
    Mol Cell; 2017 Apr; 66(1):38-49.e6. PubMed ID: 28318822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An mRNA Capping Enzyme Targets FACT to the Active Gene To Enhance the Engagement of RNA Polymerase II into Transcriptional Elongation.
    Sen R; Kaja A; Ferdoush J; Lahudkar S; Barman P; Bhaumik SR
    Mol Cell Biol; 2017 Jul; 37(13):. PubMed ID: 28396559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of cis elements directing termination of yeast nonpolyadenylated snoRNA transcripts.
    Carroll KL; Pradhan DA; Granek JA; Clarke ND; Corden JL
    Mol Cell Biol; 2004 Jul; 24(14):6241-52. PubMed ID: 15226427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A compromised yeast RNA polymerase II enhances UV sensitivity in the absence of global genome nucleotide excision repair.
    Wong JM; Ingles CJ
    Mol Gen Genet; 2001 Feb; 264(6):842-51. PubMed ID: 11254132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Budding yeast RNA polymerases I and II employ parallel mechanisms of transcriptional termination.
    Kawauchi J; Mischo H; Braglia P; Rondon A; Proudfoot NJ
    Genes Dev; 2008 Apr; 22(8):1082-92. PubMed ID: 18413718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Rpb4/7 module of RNA polymerase II is required for carbon catabolite repressor protein 4-negative on TATA (Ccr4-not) complex to promote elongation.
    Babbarwal V; Fu J; Reese JC
    J Biol Chem; 2014 Nov; 289(48):33125-30. PubMed ID: 25315781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of pre-mRNA accumulation by the essential yeast protein Nrd1 requires high-affinity transcript binding and a domain implicated in RNA polymerase II association.
    Steinmetz EJ; Brow DA
    Proc Natl Acad Sci U S A; 1998 Jun; 95(12):6699-704. PubMed ID: 9618475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NETSeq reveals heterogeneous nucleotide incorporation by RNA polymerase I.
    Clarke AM; Engel KL; Giles KE; Petit CM; Schneider DA
    Proc Natl Acad Sci U S A; 2018 Dec; 115(50):E11633-E11641. PubMed ID: 30482860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of backtrack recovery by RNA polymerases I and II.
    Lisica A; Engel C; Jahnel M; Roldán É; Galburt EA; Cramer P; Grill SW
    Proc Natl Acad Sci U S A; 2016 Mar; 113(11):2946-51. PubMed ID: 26929337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A CBF5 mutation that disrupts nucleolar localization of early tRNA biosynthesis in yeast also suppresses tRNA gene-mediated transcriptional silencing.
    Kendall A; Hull MW; Bertrand E; Good PD; Singer RH; Engelke DR
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13108-13. PubMed ID: 11069303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteins that genetically interact with the Saccharomyces cerevisiae transcription factor Gal11p emphasize its role in the initiation-elongation transition.
    Badi L; Barberis A
    Mol Genet Genomics; 2001 Aug; 265(6):1076-86. PubMed ID: 11523780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcription elongation is finely tuned by dozens of regulatory factors.
    Couvillion M; Harlen KM; Lachance KC; Trotta KL; Smith E; Brion C; Smalec BM; Churchman LS
    Elife; 2022 May; 11():. PubMed ID: 35575476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. External conditions inversely change the RNA polymerase II elongation rate and density in yeast.
    Miguel A; Montón F; Li T; Gómez-Herreros F; Chávez S; Alepuz P; Pérez-Ortín JE
    Biochim Biophys Acta; 2013 Nov; 1829(11):1248-55. PubMed ID: 24103494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide RNA polymerase II: not genes only!
    Koch F; Jourquin F; Ferrier P; Andrau JC
    Trends Biochem Sci; 2008 Jun; 33(6):265-73. PubMed ID: 18467100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation of RNA polymerase II transcript cleavage activity contributes to maintain transcriptional fidelity in yeast.
    Koyama H; Ito T; Nakanishi T; Sekimizu K
    Genes Cells; 2007 May; 12(5):547-59. PubMed ID: 17535246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.