BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 29570714)

  • 21. Control of pre-mRNA accumulation by the essential yeast protein Nrd1 requires high-affinity transcript binding and a domain implicated in RNA polymerase II association.
    Steinmetz EJ; Brow DA
    Proc Natl Acad Sci U S A; 1998 Jun; 95(12):6699-704. PubMed ID: 9618475
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcription factor UAF, expansion and contraction of ribosomal DNA (rDNA) repeats, and RNA polymerase switch in transcription of yeast rDNA.
    Oakes M; Siddiqi I; Vu L; Aris J; Nomura M
    Mol Cell Biol; 1999 Dec; 19(12):8559-69. PubMed ID: 10567580
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A network of interdependent molecular interactions describes a higher order Nrd1-Nab3 complex involved in yeast transcription termination.
    Loya TJ; O'Rourke TW; Degtyareva N; Reines D
    J Biol Chem; 2013 Nov; 288(47):34158-34167. PubMed ID: 24100036
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The capping enzyme facilitates promoter escape and assembly of a follow-on preinitiation complex for reinitiation.
    Fujiwara R; Damodaren N; Wilusz JE; Murakami K
    Proc Natl Acad Sci U S A; 2019 Nov; 116(45):22573-22582. PubMed ID: 31591205
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetic competition between RNA Polymerase II and Sen1-dependent transcription termination.
    Hazelbaker DZ; Marquardt S; Wlotzka W; Buratowski S
    Mol Cell; 2013 Jan; 49(1):55-66. PubMed ID: 23177741
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A CBF5 mutation that disrupts nucleolar localization of early tRNA biosynthesis in yeast also suppresses tRNA gene-mediated transcriptional silencing.
    Kendall A; Hull MW; Bertrand E; Good PD; Singer RH; Engelke DR
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13108-13. PubMed ID: 11069303
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NETSeq reveals heterogeneous nucleotide incorporation by RNA polymerase I.
    Clarke AM; Engel KL; Giles KE; Petit CM; Schneider DA
    Proc Natl Acad Sci U S A; 2018 Dec; 115(50):E11633-E11641. PubMed ID: 30482860
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Paf1p, an RNA polymerase II-associated factor in Saccharomyces cerevisiae, may have both positive and negative roles in transcription.
    Shi X; Finkelstein A; Wolf AJ; Wade PA; Burton ZF; Jaehning JA
    Mol Cell Biol; 1996 Feb; 16(2):669-76. PubMed ID: 8552095
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-wide mapping of yeast RNA polymerase II termination.
    Schaughency P; Merran J; Corden JL
    PLoS Genet; 2014 Oct; 10(10):e1004632. PubMed ID: 25299594
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Causes and consequences of RNA polymerase II stalling during transcript elongation.
    Noe Gonzalez M; Blears D; Svejstrup JQ
    Nat Rev Mol Cell Biol; 2021 Jan; 22(1):3-21. PubMed ID: 33208928
    [TBL] [Abstract][Full Text] [Related]  

  • 31. External conditions inversely change the RNA polymerase II elongation rate and density in yeast.
    Miguel A; Montón F; Li T; Gómez-Herreros F; Chávez S; Alepuz P; Pérez-Ortín JE
    Biochim Biophys Acta; 2013 Nov; 1829(11):1248-55. PubMed ID: 24103494
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proteins that genetically interact with the Saccharomyces cerevisiae transcription factor Gal11p emphasize its role in the initiation-elongation transition.
    Badi L; Barberis A
    Mol Genet Genomics; 2001 Aug; 265(6):1076-86. PubMed ID: 11523780
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase.
    Steinmetz EJ; Warren CL; Kuehner JN; Panbehi B; Ansari AZ; Brow DA
    Mol Cell; 2006 Dec; 24(5):735-746. PubMed ID: 17157256
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Purified yeast RNA polymerase II reads through intrinsic blocks to elongation in response to the yeast TFIIS analogue, P37.
    Christie KR; Awrey DE; Edwards AM; Kane CM
    J Biol Chem; 1994 Jan; 269(2):936-43. PubMed ID: 8288647
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spt5 Plays Vital Roles in the Control of Sense and Antisense Transcription Elongation.
    Shetty A; Kallgren SP; Demel C; Maier KC; Spatt D; Alver BH; Cramer P; Park PJ; Winston F
    Mol Cell; 2017 Apr; 66(1):77-88.e5. PubMed ID: 28366642
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Real-time observation of transcription initiation and elongation on an endogenous yeast gene.
    Larson DR; Zenklusen D; Wu B; Chao JA; Singer RH
    Science; 2011 Apr; 332(6028):475-8. PubMed ID: 21512033
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A complete set of nascent transcription rates for yeast genes.
    Pelechano V; Chávez S; Pérez-Ortín JE
    PLoS One; 2010 Nov; 5(11):e15442. PubMed ID: 21103382
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Saccharomyces cerevisiae transcription elongation mutants are defective in PUR5 induction in response to nucleotide depletion.
    Shaw RJ; Reines D
    Mol Cell Biol; 2000 Oct; 20(20):7427-37. PubMed ID: 11003640
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Defining the Influence of the A12.2 Subunit on Transcription Elongation and Termination by RNA Polymerase I In Vivo.
    Clarke AM; Huffines AK; Edwards YJK; Petit CM; Schneider DA
    Genes (Basel); 2021 Nov; 12(12):. PubMed ID: 34946888
    [No Abstract]   [Full Text] [Related]  

  • 40. Getting up to speed with transcription elongation by RNA polymerase II.
    Jonkers I; Lis JT
    Nat Rev Mol Cell Biol; 2015 Mar; 16(3):167-77. PubMed ID: 25693130
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.