These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 29570717)

  • 1. Population dynamics of engineered underdominance and killer-rescue gene drives in the control of disease vectors.
    Edgington MP; Alphey LS
    PLoS Comput Biol; 2018 Mar; 14(3):e1006059. PubMed ID: 29570717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecological effects on underdominance threshold drives for vector control.
    Khamis D; El Mouden C; Kura K; Bonsall MB
    J Theor Biol; 2018 Nov; 456():1-15. PubMed ID: 30040965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the mutation and reversal of engineered underdominance gene drives.
    Edgington MP; Alphey LS
    J Theor Biol; 2019 Oct; 479():14-21. PubMed ID: 31260669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling confinement and reversibility of threshold-dependent gene drive systems in spatially-explicit Aedes aegypti populations.
    Sánchez C HM; Bennett JB; Wu SL; Rašić G; Akbari OS; Marshall JM
    BMC Biol; 2020 May; 18(1):50. PubMed ID: 32398005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conditions for success of engineered underdominance gene drive systems.
    Edgington MP; Alphey LS
    J Theor Biol; 2017 Oct; 430():128-140. PubMed ID: 28728996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Confinement of gene drive systems to local populations: a comparative analysis.
    Marshall JM; Hay BA
    J Theor Biol; 2012 Feb; 294():153-71. PubMed ID: 22094363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the dynamics of a non-limited and a self-limited gene drive system in structured Aedes aegypti populations.
    Legros M; Xu C; Morrison A; Scott TW; Lloyd AL; Gould F
    PLoS One; 2013; 8(12):e83354. PubMed ID: 24340097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Population Dynamics of Underdominance Gene Drive Systems in Continuous Space.
    Champer J; Zhao J; Champer SE; Liu J; Messer PW
    ACS Synth Biol; 2020 Apr; 9(4):779-792. PubMed ID: 32142612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current Effector and Gene-Drive Developments to Engineer Arbovirus-Resistant Aedes aegypti (Diptera: Culicidae) for a Sustainable Population Replacement Strategy in the Field.
    Reid WR; Olson KE; Franz AWE
    J Med Entomol; 2021 Sep; 58(5):1987-1996. PubMed ID: 33704462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in threshold-dependent gene drives for mosquitoes.
    Leftwich PT; Edgington MP; Harvey-Samuel T; Carabajal Paladino LZ; Norman VC; Alphey L
    Biochem Soc Trans; 2018 Oct; 46(5):1203-1212. PubMed ID: 30190331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a confinable gene drive system in the human disease vector
    Li M; Yang T; Kandul NP; Bui M; Gamez S; Raban R; Bennett J; Sánchez C HM; Lanzaro GC; Schmidt H; Lee Y; Marshall JM; Akbari OS
    Elife; 2020 Jan; 9():. PubMed ID: 31960794
    [No Abstract]   [Full Text] [Related]  

  • 12. Multi-locus assortment (MLA) for transgene dispersal and elimination in mosquito populations.
    Rasgon JL
    PLoS One; 2009 Jun; 4(6):e5833. PubMed ID: 19503813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A confinable home-and-rescue gene drive for population modification.
    Kandul NP; Liu J; Bennett JB; Marshall JM; Akbari OS
    Elife; 2021 Mar; 10():. PubMed ID: 33666174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Introducing desirable transgenes into insect populations using Y-linked meiotic drive - a theoretical assessment.
    Huang Y; Magori K; Lloyd AL; Gould F
    Evolution; 2007 Apr; 61(4):717-26. PubMed ID: 17439607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Next-generation gene drive for population modification of the malaria vector mosquito,
    Carballar-Lejarazú R; Ogaugwu C; Tushar T; Kelsey A; Pham TB; Murphy J; Schmidt H; Lee Y; Lanzaro GC; James AA
    Proc Natl Acad Sci U S A; 2020 Sep; 117(37):22805-22814. PubMed ID: 32839345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vector genetics, insecticide resistance and gene drives: An agent-based modeling approach to evaluate malaria transmission and elimination.
    Selvaraj P; Wenger EA; Bridenbecker D; Windbichler N; Russell JR; Gerardin J; Bever CA; Nikolov M
    PLoS Comput Biol; 2020 Aug; 16(8):e1008121. PubMed ID: 32797077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-based gene drives generate super-Mendelian inheritance in the disease vector Culex quinquefasciatus.
    Harvey-Samuel T; Feng X; Okamoto EM; Purusothaman DK; Leftwich PT; Alphey L; Gantz VM
    Nat Commun; 2023 Nov; 14(1):7561. PubMed ID: 37985762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasible introgression of an anti-pathogen transgene into an urban mosquito population without using gene-drive.
    Okamoto KW; Robert MA; Gould F; Lloyd AL
    PLoS Negl Trop Dis; 2014 Jul; 8(7):e2827. PubMed ID: 24992213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial gene drives and pushed genetic waves.
    Tanaka H; Stone HA; Nelson DR
    Proc Natl Acad Sci U S A; 2017 Aug; 114(32):8452-8457. PubMed ID: 28743753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and testing of a novel killer-rescue self-limiting gene drive system in
    Webster SH; Vella MR; Scott MJ
    Proc Biol Sci; 2020 Apr; 287(1925):20192994. PubMed ID: 32292114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.