These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 29570733)
1. Ribosome profiling reveals changes in translational status of soybean transcripts during immature cotyledon development. Shamimuzzaman M; Vodkin L PLoS One; 2018; 13(3):e0194596. PubMed ID: 29570733 [TBL] [Abstract][Full Text] [Related]
2. Using RNA-Seq to profile soybean seed development from fertilization to maturity. Jones SI; Vodkin LO PLoS One; 2013; 8(3):e59270. PubMed ID: 23555009 [TBL] [Abstract][Full Text] [Related]
3. Developmental profiling of gene expression in soybean trifoliate leaves and cotyledons. Brown AV; Hudson KA BMC Plant Biol; 2015 Jul; 15():169. PubMed ID: 26149852 [TBL] [Abstract][Full Text] [Related]
4. Specific elements of the glyoxylate pathway play a significant role in the functional transition of the soybean cotyledon during seedling development. Gonzalez DO; Vodkin LO BMC Genomics; 2007 Dec; 8():468. PubMed ID: 18093333 [TBL] [Abstract][Full Text] [Related]
5. High level transgenic expression of soybean (Glycine max) GmERF and Gmubi gene promoters isolated by a novel promoter analysis pipeline. Hernandez-Garcia CM; Bouchard RA; Rushton PJ; Jones ML; Chen X; Timko MP; Finer JJ BMC Plant Biol; 2010 Nov; 10():237. PubMed ID: 21050446 [TBL] [Abstract][Full Text] [Related]
6. RNA-Seq profiling of a defective seed coat mutation in Glycine max reveals differential expression of proline-rich and other cell wall protein transcripts. Kour A; Boone AM; Vodkin LO PLoS One; 2014; 9(5):e96342. PubMed ID: 24828743 [TBL] [Abstract][Full Text] [Related]
7. Transcription factors and glyoxylate cycle genes prominent in the transition of soybean cotyledons to the first functional leaves of the seedling. Shamimuzzaman M; Vodkin L Funct Integr Genomics; 2014 Dec; 14(4):683-96. PubMed ID: 25070765 [TBL] [Abstract][Full Text] [Related]
8. Identification of soybean seed developmental stage-specific and tissue-specific miRNA targets by degradome sequencing. Shamimuzzaman M; Vodkin L BMC Genomics; 2012 Jul; 13():310. PubMed ID: 22799740 [TBL] [Abstract][Full Text] [Related]
9. RNA-Seq Atlas of Glycine max: a guide to the soybean transcriptome. Severin AJ; Woody JL; Bolon YT; Joseph B; Diers BW; Farmer AD; Muehlbauer GJ; Nelson RT; Grant D; Specht JE; Graham MA; Cannon SB; May GD; Vance CP; Shoemaker RC BMC Plant Biol; 2010 Aug; 10():160. PubMed ID: 20687943 [TBL] [Abstract][Full Text] [Related]
10. A sucrose-binding protein and β-conglycinins regulate soybean seed protein content and control multiple seed traits. Lakhssassi N; El Baze A; Knizia D; Salhi Y; Embaby MG; Anil E; Mallory C; Lakhssassi A; Meksem J; Shi H; Vuong TD; Meksem K; Kassem MA; AbuGhazaleh A; Nguyen HT; Bellaloui N; Boualem A; Meksem K Plant Physiol; 2024 Oct; 196(2):1298-1321. PubMed ID: 39056548 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide identification of binding sites for NAC and YABBY transcription factors and co-regulated genes during soybean seedling development by ChIP-Seq and RNA-Seq. Shamimuzzaman M; Vodkin L BMC Genomics; 2013 Jul; 14():477. PubMed ID: 23865409 [TBL] [Abstract][Full Text] [Related]
12. Protein sorting and expression of a unique soybean cotyledon protein, GmSBP, destined for the protein storage vacuole. Elmer A; Chao W; Grimes H Plant Mol Biol; 2003 Jul; 52(5):1089-106. PubMed ID: 14558667 [TBL] [Abstract][Full Text] [Related]
13. Similarity between soybean and Lin JY; Le BH; Chen M; Henry KF; Hur J; Hsieh TF; Chen PY; Pelletier JM; Pellegrini M; Fischer RL; Harada JJ; Goldberg RB Proc Natl Acad Sci U S A; 2017 Nov; 114(45):E9730-E9739. PubMed ID: 29078418 [TBL] [Abstract][Full Text] [Related]
14. Role of O-acetyl-l-serine in the coordinated regulation of the expression of a soybean seed storage-protein gene by sulfur and nitrogen nutrition. Kim H; Hirai MY; Hayashi H; Chino M; Naito S; Fujiwara T Planta; 1999 Sep; 209(3):282-9. PubMed ID: 10502094 [TBL] [Abstract][Full Text] [Related]
15. Divergent patterns of endogenous small RNA populations from seed and vegetative tissues of Glycine max. Zabala G; Campos E; Varala KK; Bloomfield S; Jones SI; Win H; Tuteja JH; Calla B; Clough SJ; Hudson M; Vodkin LO BMC Plant Biol; 2012 Oct; 12():177. PubMed ID: 23031057 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome analysis reveals a critical role of CHS7 and CHS8 genes for isoflavonoid synthesis in soybean seeds. Dhaubhadel S; Gijzen M; Moy P; Farhangkhoee M Plant Physiol; 2007 Jan; 143(1):326-38. PubMed ID: 17098860 [TBL] [Abstract][Full Text] [Related]
17. The Soybean Sugar Transporter GmSWEET15 Mediates Sucrose Export from Endosperm to Early Embryo. Wang S; Yokosho K; Guo R; Whelan J; Ruan YL; Ma JF; Shou H Plant Physiol; 2019 Aug; 180(4):2133-2141. PubMed ID: 31221732 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of lettuce chloroplast and soybean cotyledon as platforms for production of functional bone morphogenetic protein 2. Queiroz LN; Maldaner FR; Mendes ÉA; Sousa AR; D'Allastta RC; Mendonça G; Mendonça DBS; Aragão FJL Transgenic Res; 2019 Apr; 28(2):213-224. PubMed ID: 30888592 [TBL] [Abstract][Full Text] [Related]
19. A novel plant protein disulfide isomerase family homologous to animal P5 - molecular cloning and characterization as a functional protein for folding of soybean seed-storage proteins. Wadahama H; Kamauchi S; Nakamoto Y; Nishizawa K; Ishimoto M; Kawada T; Urade R FEBS J; 2008 Feb; 275(3):399-410. PubMed ID: 18167147 [TBL] [Abstract][Full Text] [Related]