BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 29570740)

  • 1. Identifying bedrest using 24-h waist or wrist accelerometry in adults.
    Tracy JD; Acra S; Chen KY; Buchowski MS
    PLoS One; 2018; 13(3):e0194461. PubMed ID: 29570740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying bedrest using waist-worn triaxial accelerometers in preschool children.
    Tracy JD; Donnelly T; Sommer EC; Heerman WJ; Barkin SL; Buchowski MS
    PLoS One; 2021; 16(1):e0246055. PubMed ID: 33507967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separating bedtime rest from activity using waist or wrist-worn accelerometers in youth.
    Tracy DJ; Xu Z; Choi L; Acra S; Chen KY; Buchowski MS
    PLoS One; 2014; 9(4):e92512. PubMed ID: 24727999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PSG Validation of minute-to-minute scoring for sleep and wake periods in a consumer wearable device.
    Cheung J; Leary EB; Lu H; Zeitzer JM; Mignot E
    PLoS One; 2020; 15(9):e0238464. PubMed ID: 32941498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating sleep efficiency in 10- to- 13-year-olds using a waist-worn accelerometer.
    Borghese MM; Lin Y; Chaput JP; Janssen I
    Sleep Health; 2018 Feb; 4(1):110-115. PubMed ID: 29332671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of automatic wear-time detection algorithms in a free-living setting of wrist-worn and hip-worn ActiGraph GT3X.
    Knaier R; Höchsmann C; Infanger D; Hinrichs T; Schmidt-Trucksäss A
    BMC Public Health; 2019 Feb; 19(1):244. PubMed ID: 30819148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of wear/nonwear time classification algorithms for triaxial accelerometer.
    Choi L; Ward SC; Schnelle JF; Buchowski MS
    Med Sci Sports Exerc; 2012 Oct; 44(10):2009-16. PubMed ID: 22525772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fully automated waist-worn accelerometer algorithm for detecting children's sleep-period time separate from 24-h physical activity or sedentary behaviors.
    Tudor-Locke C; Barreira TV; Schuna JM; Mire EF; Katzmarzyk PT
    Appl Physiol Nutr Metab; 2014 Jan; 39(1):53-7. PubMed ID: 24383507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of sampling rate on acceleration and counts of hip- and wrist-worn ActiGraph accelerometers in children.
    Clevenger KA; Pfeiffer KA; Mackintosh KA; McNarry MA; Brønd J; Arvidsson D; Montoye AHK
    Physiol Meas; 2019 Sep; 40(9):095008. PubMed ID: 31518999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers.
    Ellis K; Kerr J; Godbole S; Lanckriet G; Wing D; Marshall S
    Physiol Meas; 2014 Nov; 35(11):2191-203. PubMed ID: 25340969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The backwards comparability of wrist worn GENEActiv and waist worn ActiGraph accelerometer estimates of sedentary time in children.
    Boddy LM; Noonan RJ; Rowlands AV; Hurter L; Knowles ZR; Fairclough SJ
    J Sci Med Sport; 2019 Jul; 22(7):814-820. PubMed ID: 30803818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of a physical activity accelerometer device worn on the hip and wrist against polysomnography.
    Full KM; Kerr J; Grandner MA; Malhotra A; Moran K; Godoble S; Natarajan L; Soler X
    Sleep Health; 2018 Apr; 4(2):209-216. PubMed ID: 29555136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of the Vivago Wrist-Worn accelerometer in the assessment of physical activity.
    Vanhelst J; Hurdiel R; Mikulovic J; Bui-Xuân G; Fardy P; Theunynck D; Béghin L
    BMC Public Health; 2012 Aug; 12():690. PubMed ID: 22913286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of Gait Parameters in Huntington's Disease Using Wearable Sensors in the Clinic and Free-living Conditions.
    Lozano-Garcia M; Doheny EP; Mann E; Morgan-Jones P; Drew C; Busse-Morris M; Lowery MM
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2239-2249. PubMed ID: 38819972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison Between Wrist-Worn and Waist-Worn Accelerometry.
    Loprinzi PD; Smith B
    J Phys Act Health; 2017 Jul; 14(7):539-545. PubMed ID: 28290761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using accelerometry to classify physical activity intensity in older adults: What is the optimal wear-site?
    Duncan MJ; Rowlands A; Lawson C; Leddington Wright S; Hill M; Morris M; Eyre E; Tallis J
    Eur J Sport Sci; 2020 Sep; 20(8):1131-1139. PubMed ID: 31726952
    [No Abstract]   [Full Text] [Related]  

  • 17. Comparison of step outputs for waist and wrist accelerometer attachment sites.
    Tudor-Locke C; Barreira TV; Schuna JM
    Med Sci Sports Exerc; 2015 Apr; 47(4):839-42. PubMed ID: 25121517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility of a Chest-worn accelerometer for physical activity measurement.
    Zhang JH; Macfarlane DJ; Sobko T
    J Sci Med Sport; 2016 Dec; 19(12):1015-1019. PubMed ID: 27017012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of an automated sleep detection algorithm using data from multiple accelerometer brands.
    Plekhanova T; Rowlands AV; Davies MJ; Hall AP; Yates T; Edwardson CL
    J Sleep Res; 2023 Jun; 32(3):e13760. PubMed ID: 36317222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ActiGraph GT3X+ and Actical Wrist and Hip Worn Accelerometers for Sleep and Wake Indices in Young Children Using an Automated Algorithm: Validation With Polysomnography.
    Smith C; Galland B; Taylor R; Meredith-Jones K
    Front Psychiatry; 2019; 10():958. PubMed ID: 31992999
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.