BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 29570740)

  • 21. Physical activity using wrist-worn accelerometers: comparison of dominant and non-dominant wrist.
    Dieu O; Mikulovic J; Fardy PS; Bui-Xuan G; Béghin L; Vanhelst J
    Clin Physiol Funct Imaging; 2017 Sep; 37(5):525-529. PubMed ID: 26749436
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel upper-limb function measure derived from finger-worn sensor data collected in a free-living setting.
    Lee SI; Liu X; Rajan S; Ramasarma N; Choe EK; Bonato P
    PLoS One; 2019; 14(3):e0212484. PubMed ID: 30893308
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of physical activity assessed using hip- and wrist-worn accelerometers.
    Kamada M; Shiroma EJ; Harris TB; Lee IM
    Gait Posture; 2016 Feb; 44():23-8. PubMed ID: 27004628
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Do wearable fitness devices correlate with performance-based tests of work-related functional capacity?
    Karpman J; Gross DP; Manns P; Tomkins-Lane C
    Work; 2020; 66(1):201-211. PubMed ID: 32417827
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Classification of physical activity intensities using a wrist-worn accelerometer in 8-12-year-old children.
    Chandler JL; Brazendale K; Beets MW; Mealing BA
    Pediatr Obes; 2016 Apr; 11(2):120-7. PubMed ID: 25893950
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The impact of accelerometer wear location on the relationship between step counts and arterial stiffness in adults treated for hypertension and diabetes.
    Cooke AB; Daskalopoulou SS; Dasgupta K
    J Sci Med Sport; 2018 Apr; 21(4):398-403. PubMed ID: 28855085
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physical activity classification using the GENEA wrist-worn accelerometer.
    Zhang S; Rowlands AV; Murray P; Hurst TL
    Med Sci Sports Exerc; 2012 Apr; 44(4):742-8. PubMed ID: 21988935
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparability of children's sedentary time estimates derived from wrist worn GENEActiv and hip worn ActiGraph accelerometer thresholds.
    Boddy LM; Noonan RJ; Kim Y; Rowlands AV; Welk GJ; Knowles ZR; Fairclough SJ
    J Sci Med Sport; 2018 Oct; 21(10):1045-1049. PubMed ID: 29650338
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Validation of actigraphy sleep metrics in children aged 8 to 16 years: considerations for device type, placement and algorithms.
    Meredith-Jones KA; Haszard JJ; Graham-DeMello A; Campbell A; Stewart T; Galland BC; Cox A; Kennedy G; Duncan S; Taylor RW
    Int J Behav Nutr Phys Act; 2024 Apr; 21(1):40. PubMed ID: 38627708
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparability and feasibility of wrist- and hip-worn accelerometers in free-living adolescents.
    Scott JJ; Rowlands AV; Cliff DP; Morgan PJ; Plotnikoff RC; Lubans DR
    J Sci Med Sport; 2017 Dec; 20(12):1101-1106. PubMed ID: 28501418
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of Sedentary Estimates between activPAL and Hip- and Wrist-Worn ActiGraph.
    Koster A; Shiroma EJ; Caserotti P; Matthews CE; Chen KY; Glynn NW; Harris TB
    Med Sci Sports Exerc; 2016 Aug; 48(8):1514-1522. PubMed ID: 27031744
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calibration of GENEActiv accelerometer wrist cut-points for the assessment of physical activity intensity of preschool aged children.
    Roscoe CMP; James RS; Duncan MJ
    Eur J Pediatr; 2017 Aug; 176(8):1093-1098. PubMed ID: 28674825
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activity Recognition in Youth Using Single Accelerometer Placed at Wrist or Ankle.
    Mannini A; Rosenberger M; Haskell WL; Sabatini AM; Intille SS
    Med Sci Sports Exerc; 2017 Apr; 49(4):801-812. PubMed ID: 27820724
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Estimating activity and sedentary behavior from an accelerometer on the hip or wrist.
    Rosenberger ME; Haskell WL; Albinali F; Mota S; Nawyn J; Intille S
    Med Sci Sports Exerc; 2013 May; 45(5):964-75. PubMed ID: 23247702
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Field evaluation of a random forest activity classifier for wrist-worn accelerometer data.
    Pavey TG; Gilson ND; Gomersall SR; Clark B; Trost SG
    J Sci Med Sport; 2017 Jan; 20(1):75-80. PubMed ID: 27372275
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The convergent validity of Actiwatch 2 and ActiGraph Link accelerometers in measuring total sleeping period, wake after sleep onset, and sleep efficiency in free-living condition.
    Lee PH; Suen LK
    Sleep Breath; 2017 Mar; 21(1):209-215. PubMed ID: 27614441
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of Compliance and Intervention Outcomes Between Hip- and Wrist-Worn Accelerometers During a Randomized Crossover Trial of an Active Video Games Intervention in Children.
    Howie EK; McVeigh JA; Straker LM
    J Phys Act Health; 2016 Sep; 13(9):964-9. PubMed ID: 27172616
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wrist-worn triaxial accelerometry predicts the energy expenditure of non-vigorous daily physical activities.
    Sirichana W; Dolezal BA; Neufeld EV; Wang X; Cooper CB
    J Sci Med Sport; 2017 Aug; 20(8):761-765. PubMed ID: 28159535
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calibrating Wrist-Worn Accelerometers for Physical Activity Assessment in Preschoolers: Machine Learning Approaches.
    Li S; Howard JT; Sosa ET; Cordova A; Parra-Medina D; Yin Z
    JMIR Form Res; 2020 Aug; 4(8):e16727. PubMed ID: 32667893
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Moving Forward with Backward Compatibility: Translating Wrist Accelerometer Data.
    Rowlands AV; Cliff DP; Fairclough SJ; Boddy LM; Olds TS; Parfitt G; Noonan RJ; Downs SJ; Knowles ZR; Beets MW
    Med Sci Sports Exerc; 2016 Nov; 48(11):2142-2149. PubMed ID: 27327029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.