These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 29571098)

  • 1. Numerical modelling of emissions of nitrogen oxides in solid fuel combustion.
    Bešenić T; Mikulčić H; Vujanović M; Duić N
    J Environ Manage; 2018 Jun; 215():177-184. PubMed ID: 29571098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low NOx burners--prediction of emissions concentration based on design, measurements and modelling.
    Bebar L; Kermes V; Stehlik P; Canek J; Oral J
    Waste Manag; 2002; 22(4):443-51. PubMed ID: 12099503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global partitioning of NOx sources using satellite observations: relative roles of fossil fuel combustion, biomass burning and soil emissions.
    Jaeglé L; Steinberger L; Martin RV; Chance K
    Faraday Discuss; 2005; 130():407-23; discussion 491-517, 519-24. PubMed ID: 16161795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen oxides emissions from the MILD combustion with the conditions of recirculation gas.
    Park M; Shim SH; Jeong SH; Oh KJ; Lee SS
    J Air Waste Manag Assoc; 2017 Apr; 67(4):402-411. PubMed ID: 27649808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of plant additives on the concentration of sulfur and nitrogen oxides in the combustion products of coal-water slurries containing petrochemicals.
    Nyashina GS; Kuznetsov GV; Strizhak PA
    Environ Pollut; 2020 Mar; 258():113682. PubMed ID: 31812529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of combustion temperature on air emissions and support fuel consumption in full scale fluidized bed sludge incineration: with particular focus on nitrogen oxides and total organic carbon.
    Löschau M
    Waste Manag Res; 2018 Apr; 36(4):342-350. PubMed ID: 29451103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen oxides, sulfur trioxide, and mercury emissions during oxy-fuel fluidized bed combustion of Victorian brown coal.
    Roy B; Chen L; Bhattacharya S
    Environ Sci Technol; 2014 Dec; 48(24):14844-50. PubMed ID: 25402169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CFD analysis of municipal solid waste combustion using detailed chemical kinetic modelling.
    Frank A; Castaldi MJ
    Waste Manag Res; 2014 Aug; 32(8):745-54. PubMed ID: 25005043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental investigation on NOx emission characteristics of a new solid fuel made from sewage sludge mixed with coal in combustion.
    Zhai Y; Zhu L; Chen H; Xu B; Li C; Zeng G
    Waste Manag Res; 2015 Feb; 33(2):157-64. PubMed ID: 25649404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrogen Isotope Composition of Thermally Produced NOx from Various Fossil-Fuel Combustion Sources.
    Walters WW; Tharp BD; Fang H; Kozak BJ; Michalski G
    Environ Sci Technol; 2015 Oct; 49(19):11363-71. PubMed ID: 26332865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of liquid plant additives on the anthropogenic gas emissions from the combustion of coal-water slurries.
    Nyashina GS; Strizhak PA
    Environ Pollut; 2018 Nov; 242(Pt A):31-41. PubMed ID: 30373034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen evolution during the co-combustion of hydrothermally treated municipal solid waste and coal in a bubbling fluidized bed.
    Lu L; Jin Y; Liu H; Ma X; Yoshikawa K
    Waste Manag; 2014 Jan; 34(1):79-85. PubMed ID: 24120458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating combustion kinetics and quantifying fuel-N conversion tendency of shoe manufacturing waste.
    Sun G; Li L; Duan Y; Chen Y; Gu Q; Wang Y; Sun Z; Mao J; Qian X; Duan L
    Environ Res; 2024 Jun; 250():118339. PubMed ID: 38325791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterisation and evaluation of the emissions from the combustion of Orimulsion-400, coal and heavy fuel oil in a thermoelectric power plant.
    Rotatori M; Guerriero E; Sbrilli A; Confessore L; Bianchini M; Marino F; Petrilli L; Allegrini I
    Environ Technol; 2003 Aug; 24(8):1017-23. PubMed ID: 14509393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental investigation on co-combustion of sewage sludge and coal gangue: SO2, NOx and trace elements emissions.
    Yang Z; Zhang Y; Liu L; Wang X; Zhang Z
    Waste Manag; 2016 Apr; 50():213-21. PubMed ID: 26584559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of functional forms of nitrogen on fuel-NOx emissions.
    Zhang L; Su D; Zhong M
    Environ Monit Assess; 2015 Jan; 187(1):4195. PubMed ID: 25527433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective incineration of fuel-waste slurries from several related industries.
    Nyashina GS; Vershinina KY; Shlegel NE; Strizhak PA
    Environ Res; 2019 Sep; 176():108559. PubMed ID: 31271920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increase in tropospheric nitrogen dioxide over China observed from space.
    Richter A; Burrows JP; Nüss H; Granier C; Niemeier U
    Nature; 2005 Sep; 437(7055):129-32. PubMed ID: 16136141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy, industry and nitrogen: strategies for decreasing reactive nitrogen emissions.
    Moomaw WR
    Ambio; 2002 Mar; 31(2):184-9. PubMed ID: 12078008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anthropogenic emissions from coal-water slurry combustion: Influence of component composition and registration methods.
    Dorokhov VV; Nyashina GS; Strizhak PA
    Environ Res; 2023 Apr; 223():115444. PubMed ID: 36758921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.