BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 29571158)

  • 1. Molecular features of nonionic detergents involved in the binding kinetics and solubilization efficiency, as studied in model (Langmuir films) and biological (Erythrocytes) membranes.
    Casadei BR; Domingues CC; Clop EM; Couto VM; Perillo MA; de Paula E
    Colloids Surf B Biointerfaces; 2018 Jun; 166():152-160. PubMed ID: 29571158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brij detergents reveal new aspects of membrane microdomain in erythrocytes.
    Casadei BR; De Oliveira Carvalho P; Riske KA; Barbosa Rde M; De Paula E; Domingues CC
    Mol Membr Biol; 2014 Sep; 31(6):195-205. PubMed ID: 25222860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Release of potassium, lipids, and proteins from nonionic detergent treated chicken red blood cells.
    Kellermayer M; Ludány A; Miseta A; Kŏszegi T; Berta G; Bogner P; Hazlewood CF; Cameron IL; Wheatley DN
    J Cell Physiol; 1994 May; 159(2):197-204. PubMed ID: 8163560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study of the interaction of CHAPS and Triton X-100 with the erythrocyte membrane.
    Rodi PM; Bocco Gianello MD; Corregido MC; Gennaro AM
    Biochim Biophys Acta; 2014 Mar; 1838(3):859-66. PubMed ID: 24239862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the interaction of ionic detergents with lipid membranes. Thermodynamic comparison of n-alkyl-+N(CH₃)₃ and n-alkyl-SO₄⁻.
    Beck A; Li-Blatter X; Seelig A; Seelig J
    J Phys Chem B; 2010 Dec; 114(48):15862-71. PubMed ID: 21067191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathways of Membrane Solubilization: A Structural Study of Model Lipid Vesicles Exposed to Classical Detergents.
    Bjørnestad VA; Lund R
    Langmuir; 2023 Mar; 39(11):3914-3933. PubMed ID: 36893452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Release kinetics of ATP in cells exposed to nonionic detergents.
    Köszegi T
    J Biolumin Chemilumin; 1991; 6(3):153-7. PubMed ID: 1746315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detergent solubilization of lipid bilayers: a balance of driving forces.
    Lichtenberg D; Ahyayauch H; Alonso A; Goñi FM
    Trends Biochem Sci; 2013 Feb; 38(2):85-93. PubMed ID: 23290685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane resistance to Triton X-100 explored by real-time atomic force microscopy.
    Morandat S; El Kirat K
    Langmuir; 2006 Jun; 22(13):5786-91. PubMed ID: 16768509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supported Lipid Bilayer Platform for Characterizing the Membrane-Disruptive Behaviors of Triton X-100 and Potential Detergent Replacements.
    Gooran N; Yoon BK; Jackman JA
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding, activation, and solubilization of the Ca2+-ATPase from sarcoplasmic reticulum by nonionic detergents.
    Dean WL; Suarez CP
    Membr Biochem; 1984; 5(3):181-91. PubMed ID: 6235430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioluminescent monitoring of ATP release from human red blood cells treated with nonionic detergent.
    Köszegi T; Kellermayer M; Kövecs F; Jobst K
    J Clin Chem Clin Biochem; 1988 Oct; 26(10):599-604. PubMed ID: 3230377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biophysical approaches in the study of biomembrane solubilization: quantitative assessment and the role of lateral inhomogeneity.
    Riske KA; Domingues CC; Casadei BR; Mattei B; Caritá AC; Lira RB; Preté PSC; de Paula E
    Biophys Rev; 2017 Oct; 9(5):649-667. PubMed ID: 28836235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The onset of Triton X-100 solubilization of sphingomyelin/ceramide bilayers: effects of temperature and composition.
    Ahyayauch H; Arnulphi C; Sot J; Alonso A; Goñi FM
    Chem Phys Lipids; 2013; 167-168():57-61. PubMed ID: 23453949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanism of detergent solubilization of liposomes and protein-containing membranes.
    Kragh-Hansen U; le Maire M; Møller JV
    Biophys J; 1998 Dec; 75(6):2932-46. PubMed ID: 9826614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solubilization of human erythrocyte membranes by ASB detergents.
    Domingues CC; Malheiros SV; Paula Ed
    Braz J Med Biol Res; 2008 Sep; 41(9):758-64. PubMed ID: 18820764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors determining detergent resistance of erythrocyte membranes.
    Rodi PM; Trucco VM; Gennaro AM
    Biophys Chem; 2008 Jun; 135(1-3):14-8. PubMed ID: 18394774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triton X-100 partitioning into sphingomyelin bilayers at subsolubilizing detergent concentrations: effect of lipid phase and a comparison with dipalmitoylphosphatidylcholine.
    Arnulphi C; Sot J; García-Pacios M; Arrondo JL; Alonso A; Goñi FM
    Biophys J; 2007 Nov; 93(10):3504-14. PubMed ID: 17675347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detergent effects on membranes at subsolubilizing concentrations: transmembrane lipid motion, bilayer permeabilization, and vesicle lysis/reassembly are independent phenomena.
    Ahyayauch H; Bennouna M; Alonso A; Goñi FM
    Langmuir; 2010 May; 26(10):7307-13. PubMed ID: 20170131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization of detergent solubilization of membranes: implications for the isolation of rafts.
    Garner AE; Smith DA; Hooper NM
    Biophys J; 2008 Feb; 94(4):1326-40. PubMed ID: 17933878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.