BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 29571158)

  • 21. Effect of membrane perturbants on the activity and phase distribution of inositol phosphorylceramide synthase; development of a novel assay.
    Aeed PA; Sperry AE; Young CL; Nagiec MM; Elhammer AP
    Biochemistry; 2004 Jul; 43(26):8483-93. PubMed ID: 15222759
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solubilization of biomimetic lipid mixtures by some commonly used non-ionic detergents.
    Caritá AC; Cavalcanti RRM; Oliveira MSS; Riske KA
    Chem Phys Lipids; 2023 Sep; 255():105327. PubMed ID: 37442532
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detergent solubilization of phosphatidylcholine bilayers in the fluid state: influence of the acyl chain structure.
    Ahyayauch H; Larijani B; Alonso A; Goñi FM
    Biochim Biophys Acta; 2006 Feb; 1758(2):190-6. PubMed ID: 16579963
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Observing the solubilization of lipid bilayers by detergents with optical microscopy of GUVs.
    Sudbrack TP; Archilha NL; Itri R; Riske KA
    J Phys Chem B; 2011 Jan; 115(2):269-77. PubMed ID: 21171656
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of increasing concentrations of nonionic detergent Triton X-100 on solubilization and structure of rat liver and adipose plasma membranes.
    Yegutkin GG
    Membr Cell Biol; 1997; 10(5):515-20. PubMed ID: 9225255
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detergent solubilization of bovine erythrocytes. Comparison between the insoluble material and the intact membrane.
    Rodi PM; Cabeza MS; Gennaro AM
    Biophys Chem; 2006 Jul; 122(2):114-22. PubMed ID: 16580771
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lipid shape determination of detergent solubilization in mixed-lipid liposomes.
    Clark ST; Arras MML; Sarles SA; Frymier PD
    Colloids Surf B Biointerfaces; 2020 Mar; 187():110609. PubMed ID: 31806354
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Beyond the standard model of solubilization: Non-ionic surfactants induce collapse of lipid vesicles into rippled bilamellar nanodiscs.
    Bjørnestad VA; Soto-Bustamante F; Tria G; Laurati M; Lund R
    J Colloid Interface Sci; 2023 Jul; 641():553-567. PubMed ID: 36958276
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cocompartmentation of proteins and K+ within the living cell.
    Kellermayer M; Ludany A; Jobst K; Szucs G; Trombitas K; Hazlewood CF
    Proc Natl Acad Sci U S A; 1986 Feb; 83(4):1011-5. PubMed ID: 3456561
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unraveling the Biophysical Mechanisms of How Antiviral Detergents Disrupt Supported Lipid Membranes: Toward Replacing Triton X-100.
    Gooran N; Tan SW; Frey SL; Jackman JA
    Langmuir; 2024 Mar; 40(12):6524-6536. PubMed ID: 38478717
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cell-free synthesis of a functional ion channel in the absence of a membrane and in the presence of detergent.
    Berrier C; Park KH; Abes S; Bibonne A; Betton JM; Ghazi A
    Biochemistry; 2004 Oct; 43(39):12585-91. PubMed ID: 15449948
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detergent solubilisation of phospholipid bilayers in the gel state: the role of polar and hydrophobic forces.
    Patra SK; Alonso A; Goñi FM
    Biochim Biophys Acta; 1998 Aug; 1373(1):112-8. PubMed ID: 9733939
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The mechanism of detergent solubilization of lipid bilayers.
    Lichtenberg D; Ahyayauch H; Goñi FM
    Biophys J; 2013 Jul; 105(2):289-99. PubMed ID: 23870250
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxyethylene chain-cation complexation: nonionic polyoxyethylene detergents attain a positive charge and demonstrate electrostatic head group interactions.
    Hägerstrand H; Bobacka J; Bobrowska-Hägerstrand M; Kralj-Iglic V; Fosnaric M; Iglic A
    Cell Mol Biol Lett; 2001; 6(2):161-5. PubMed ID: 11544637
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The efficiency of various detergents for extraction and stabilization of acetylcholinesterase from bovine erythrocytes.
    Wong RK; Nichol CP; Sekar MC; Roufogalis BD
    Biochem Cell Biol; 1987 Jan; 65(1):8-18. PubMed ID: 3566971
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential sensitivity to detergents of actin cytoskeleton from nerve endings.
    Cubí R; Matas LA; Pou M; Aguilera J; Gil C
    Biochim Biophys Acta; 2013 Nov; 1828(11):2385-93. PubMed ID: 23817010
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solubilization of planar bilayers with detergent.
    Csúcs G; Ramsden JJ
    Biochim Biophys Acta; 1998 Mar; 1369(2):304-8. PubMed ID: 9518662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combined chemical and enzymatic stable isotope labeling for quantitative profiling of detergent-insoluble membrane proteins isolated using Triton X-100 and Brij-96.
    Blonder J; Yu LR; Radeva G; Chan KC; Lucas DA; Waybright TJ; Issaq HJ; Sharom FJ; Veenstra TD
    J Proteome Res; 2006 Feb; 5(2):349-60. PubMed ID: 16457601
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High Efficacy but Low Potency of δ-Opioid Receptor-G Protein Coupling in Brij-58-Treated, Low-Density Plasma Membrane Fragments.
    Roubalova L; Vosahlikova M; Brejchova J; Sykora J; Rudajev V; Svoboda P
    PLoS One; 2015; 10(8):e0135664. PubMed ID: 26285205
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Maintenance and mobility of hemoglobin and water within the human erythrocyte after detergent disruption of the plasma membrane.
    Cameron IL; Cox LA; Liu XR; Fullerton GD
    J Cell Physiol; 1991 Dec; 149(3):365-74. PubMed ID: 1660478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.