BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 29571668)

  • 1. Odor preference and olfactory memory are impaired in Olfaxin-deficient mice.
    Islam S; Ueda M; Nishida E; Wang MX; Osawa M; Lee D; Itoh M; Nakagawa K; Tana ; Nakagawa T
    Brain Res; 2018 Jun; 1688():81-90. PubMed ID: 29571668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Olfaxin as a novel Prune2 isoform predominantly expressed in olfactory system.
    Li S; Hayakawa-Yano Y; Itoh M; Ueda M; Ohta K; Suzuki Y; Mizuno A; Ohta E; Hida Y; Wang MX; Nakagawa T
    Brain Res; 2012 Dec; 1488():1-13. PubMed ID: 23059019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Task-Demand-Dependent Neural Representation of Odor Information in the Olfactory Bulb and Posterior Piriform Cortex.
    Wang D; Liu P; Mao X; Zhou Z; Cao T; Xu J; Sun C; Li A
    J Neurosci; 2019 Dec; 39(50):10002-10018. PubMed ID: 31672791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Subtype of Olfactory Bulb Interneurons Is Required for Odor Detection and Discrimination Behaviors.
    Takahashi H; Ogawa Y; Yoshihara S; Asahina R; Kinoshita M; Kitano T; Kitsuki M; Tatsumi K; Okuda M; Tatsumi K; Wanaka A; Hirai H; Stern PL; Tsuboi A
    J Neurosci; 2016 Aug; 36(31):8210-27. PubMed ID: 27488640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The expression and localization of Prune2 mRNA in the central nervous system.
    Li S; Itoh M; Ohta K; Ueda M; Mizuno A; Ohta E; Hida Y; Wang MX; Takeuchi K; Nakagawa T
    Neurosci Lett; 2011 Oct; 503(3):208-14. PubMed ID: 21893162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of the NMDA receptor subunit GluN3A (NR3A) in the olfactory system and its regulatory role on olfaction in the adult mouse.
    Lee JH; Wei L; Deveau TC; Gu X; Yu SP
    Brain Struct Funct; 2016 Jul; 221(6):3259-73. PubMed ID: 26334321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adenosine A
    Sun X; Li L; Zhang HY; He W; Wang DR; Huang ZL; Wang YQ
    Brain Res; 2021 Oct; 1768():147590. PubMed ID: 34310936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous activity in the piriform cortex extends the dynamic range of cortical odor coding.
    Tantirigama ML; Huang HH; Bekkers JM
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):2407-2412. PubMed ID: 28196887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic Organization of Anterior Olfactory Nucleus Inputs to Piriform Cortex.
    Russo MJ; Franks KM; Oghaz R; Axel R; Siegelbaum SA
    J Neurosci; 2020 Dec; 40(49):9414-9425. PubMed ID: 33115926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning-Induced Metaplasticity? Associative Training for Early Odor Preference Learning Down-Regulates Synapse-Specific NMDA Receptors via mGluR and Calcineurin Activation.
    Mukherjee B; Harley CW; Yuan Q
    Cereb Cortex; 2017 Jan; 27(1):616-624. PubMed ID: 26503266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apolipoprotein E4 causes early olfactory network abnormalities and short-term olfactory memory impairments.
    Peng KY; Mathews PM; Levy E; Wilson DA
    Neuroscience; 2017 Feb; 343():364-371. PubMed ID: 28003161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CB1 Receptors in the Anterior Piriform Cortex Control Odor Preference Memory.
    Terral G; Busquets-Garcia A; Varilh M; Achicallende S; Cannich A; Bellocchio L; Bonilla-Del Río I; Massa F; Puente N; Soria-Gomez E; Grandes P; Ferreira G; Marsicano G
    Curr Biol; 2019 Aug; 29(15):2455-2464.e5. PubMed ID: 31327715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualizing the engram: learning stabilizes odor representations in the olfactory network.
    Shakhawat AM; Gheidi A; Hou Q; Dhillon SK; Marrone DF; Harley CW; Yuan Q
    J Neurosci; 2014 Nov; 34(46):15394-401. PubMed ID: 25392506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms underlying early odor preference learning in rats.
    Yuan Q; Shakhawat AM; Harley CW
    Prog Brain Res; 2014; 208():115-56. PubMed ID: 24767481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of NMDA receptors and L-type calcium channels during early odor preference learning in rats.
    Jerome D; Hou Q; Yuan Q
    Eur J Neurosci; 2012 Oct; 36(8):3134-41. PubMed ID: 22762736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interhemispheric asymmetry of c-Fos expression in glomeruli and the olfactory tubercle following repeated odor stimulation.
    Jae Y; Lee N; Moon DW; Koo J
    FEBS Open Bio; 2020 May; 10(5):912-926. PubMed ID: 32237058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Odorant deprivation reversibly modulates transsynaptic changes in the NR2B-mediated CREB pathway in mouse piriform cortex.
    Kim HH; Puche AC; Margolis FL
    J Neurosci; 2006 Sep; 26(37):9548-59. PubMed ID: 16971539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal dynamics of odor responses in the lateral and dorsal olfactory bulb.
    Baker KL; Vasan G; Gumaste A; Pieribone VA; Verhagen JV
    PLoS Biol; 2019 Sep; 17(9):e3000409. PubMed ID: 31532763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Odor identity coding by distributed ensembles of neurons in the mouse olfactory cortex.
    Roland B; Deneux T; Franks KM; Bathellier B; Fleischmann A
    Elife; 2017 May; 6():. PubMed ID: 28489003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Function follows form: ecological constraints on odor codes and olfactory percepts.
    Gottfried JA
    Curr Opin Neurobiol; 2009 Aug; 19(4):422-9. PubMed ID: 19671493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.