BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 29572444)

  • 1. Designed heterogeneous palladium catalysts for reversible light-controlled bioorthogonal catalysis in living cells.
    Wang F; Zhang Y; Du Z; Ren J; Qu X
    Nat Commun; 2018 Mar; 9(1):1209. PubMed ID: 29572444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts.
    Tonga GY; Jeong Y; Duncan B; Mizuhara T; Mout R; Das R; Kim ST; Yeh YC; Yan B; Hou S; Rotello VM
    Nat Chem; 2015 Jul; 7(7):597-603. PubMed ID: 26100809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Palladium nanoparticles captured onto spherical silica particles using a urea cross-linked imidazolium molecular band.
    Shin JY; Lee BS; Jung Y; Kim SJ; Lee SG
    Chem Commun (Camb); 2007 Dec; (48):5238-40. PubMed ID: 18060154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designer Nanoreactors for Bioorthogonal Catalysis.
    Kumar A; Lee IS
    Acc Chem Res; 2024 Feb; 57(3):413-427. PubMed ID: 38243820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of polystyrene microspheres and functionalization with Pd(0) nanoparticles to perform bioorthogonal organometallic chemistry in living cells.
    Unciti-Broceta A; Johansson EM; Yusop RM; Sánchez-Martín RM; Bradley M
    Nat Protoc; 2012 May; 7(6):1207-18. PubMed ID: 22653159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-Cell Dual Drug Synthesis by Cancer-Targeting Palladium Catalysts.
    Clavadetscher J; Indrigo E; Chankeshwara SV; Lilienkampf A; Bradley M
    Angew Chem Int Ed Engl; 2017 Jun; 56(24):6864-6868. PubMed ID: 28485835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Homeopathic" palladium nanoparticle catalysis of cross carbon-carbon coupling reactions.
    Deraedt C; Astruc D
    Acc Chem Res; 2014 Feb; 47(2):494-503. PubMed ID: 24215156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of Palladium Nanoparticles with Surface Engineered Metal-Organic Frameworks for Cell-Selective Bioorthogonal Catalysis and Protein Activity Regulation.
    Chen X; Cai W; Liu J; Mao L; Wang M
    ACS Appl Mater Interfaces; 2022 Mar; 14(8):10117-10124. PubMed ID: 35179352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition Metal Ru(II) Catalysts Immobilized Nanoreactors for Conditional Bioorthogonal Catalysis in Cells.
    Gao Z; Li Y; Xing J; Lu Y; Shao Q; Hu J; Zhao S; He W; Sun B
    ACS Appl Mater Interfaces; 2024 Apr; 16(13):15870-15878. PubMed ID: 38520329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational Utilization of Black Phosphorus Nanosheets to Enhance Palladium-Mediated Bioorthogonal Catalytic Activity for Activation of Therapeutics.
    Rong M; Liu J; Sun Z; Li T; Li Y; Jiang C; Lu L
    Angew Chem Int Ed Engl; 2023 May; 62(19):e202216822. PubMed ID: 36917027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in sustainable N-heterocyclic carbene-Pd(II)-pyridine (PEPPSI) catalysts: A review.
    Peddiahgari Vasu GR; Motakatla Venkata KR; Kakarla RR; Ranganath KVS; Aminabhavi TM
    Environ Res; 2023 May; 225():115515. PubMed ID: 36842701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inorganic nanoparticles as scaffolds for bioorthogonal catalysts.
    Hirschbiegel CM; Zhang X; Huang R; Cicek YA; Fedeli S; Rotello VM
    Adv Drug Deliv Rev; 2023 Apr; 195():114730. PubMed ID: 36791809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Palladium-mediated intracellular chemistry.
    Yusop RM; Unciti-Broceta A; Johansson EM; Sánchez-Martín RM; Bradley M
    Nat Chem; 2011 Mar; 3(3):239-43. PubMed ID: 21336331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Palladium nanoparticles enzyme aggregate (PANEA) as efficient catalyst for Suzuki-Miyaura reaction in aqueous media.
    Cuenca T; Filice M; Palomo JM
    Enzyme Microb Technol; 2016 Dec; 95():242-247. PubMed ID: 27866622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress in controllable bioorthogonal catalysis for prodrug activation.
    Liu X; Huang T; Chen Z; Yang H
    Chem Commun (Camb); 2023 Oct; 59(84):12548-12559. PubMed ID: 37791560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface catalysed Suzuki-Miyaura cross-coupling by Pd nanoparticles: an operando XAS study.
    Lee AF; Ellis PJ; Fairlamb IJ; Wilson K
    Dalton Trans; 2010 Nov; 39(43):10473-82. PubMed ID: 20890537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ activation of therapeutics through bioorthogonal catalysis.
    Wang W; Zhang X; Huang R; Hirschbiegel CM; Wang H; Ding Y; Rotello VM
    Adv Drug Deliv Rev; 2021 Sep; 176():113893. PubMed ID: 34333074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supported palladium nanoparticles synthesized by living plants as a catalyst for Suzuki-Miyaura reactions.
    Parker HL; Rylott EL; Hunt AJ; Dodson JR; Taylor AF; Bruce NC; Clark JH
    PLoS One; 2014; 9(1):e87192. PubMed ID: 24489869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanomaterial-based bioorthogonal nanozymes for biological applications.
    Fedeli S; Im J; Gopalakrishnan S; Elia JL; Gupta A; Kim D; Rotello VM
    Chem Soc Rev; 2021 Dec; 50(24):13467-13480. PubMed ID: 34787131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A DNA-Gated and Self-Protected Bioorthogonal Catalyst for Nanozyme-Assisted Safe Cancer Therapy.
    Zhang Y; Zhang L; Wang W; Deng Q; Liu M; Zhu Z; Liu H; Ren J; Qu X
    Angew Chem Int Ed Engl; 2023 Aug; 62(32):e202306395. PubMed ID: 37268594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.