These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 29572648)

  • 1. The approach of visual stimuli influences expectations about stimulus types for subsequent somatosensory stimuli.
    Kimura T; Katayama J
    Exp Brain Res; 2018 Jun; 236(6):1563-1571. PubMed ID: 29572648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regularity of approaching visual stimuli influences spatial expectations for subsequent somatosensory stimuli.
    Kimura T; Katayama J
    Exp Brain Res; 2017 Jun; 235(6):1657-1663. PubMed ID: 28271219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual stimuli approaching toward the body influence temporal expectations about subsequent somatosensory stimuli.
    Kimura T; Katayama J
    Brain Res; 2017 Jun; 1664():95-101. PubMed ID: 28389236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Approach of visual stimuli modulates spatial expectations for subsequent somatosensory stimuli.
    Kimura T; Katayama J
    Int J Psychophysiol; 2015 Jun; 96(3):176-82. PubMed ID: 25889695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hand function, not proximity, biases visuotactile integration later in object processing: An ERP study.
    Vyas DB; Garza JP; Reed CL
    Conscious Cogn; 2019 Mar; 69():26-35. PubMed ID: 30685514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Negative expectations influence behavioral and ERP responses in the subsequent recognition of expectancy-incongruent neutral events.
    Lin H; Liang J
    Psychophysiology; 2020 Mar; 57(3):e13492. PubMed ID: 31608460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crossmodal influences on early somatosensory processing: interaction of vision, touch, and task-relevance.
    Dionne JK; Legon W; Staines WR
    Exp Brain Res; 2013 May; 226(4):503-12. PubMed ID: 23455852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An ERP investigation on visuotactile interactions in peripersonal and extrapersonal space: evidence for the spatial rule.
    Sambo CF; Forster B
    J Cogn Neurosci; 2009 Aug; 21(8):1550-9. PubMed ID: 18767919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency tagging of steady-state evoked potentials to explore the crossmodal links in spatial attention between vision and touch.
    Colon E; Legrain V; Huang G; Mouraux A
    Psychophysiology; 2015 Nov; 52(11):1498-510. PubMed ID: 26329531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Independent effects of eye gaze and spatial attention on the processing of tactile events: Evidence from event-related potentials.
    Gherri E; Forster B
    Biol Psychol; 2015 Jul; 109():239-47. PubMed ID: 26101088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prefrontal cortex and somatosensory cortex in tactile crossmodal association: an independent component analysis of ERP recordings.
    Ku Y; Ohara S; Wang L; Lenz FA; Hsiao SS; Bodner M; Hong B; Zhou YD
    PLoS One; 2007 Aug; 2(8):e771. PubMed ID: 17712419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophysiological correlates of incidentally learned expectations in human vision.
    Hall MG; Mattingley JB; Dux PE
    J Neurophysiol; 2018 Apr; 119(4):1461-1470. PubMed ID: 29357450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple foci of spatial attention in multimodal working memory.
    Katus T; Eimer M
    Neuroimage; 2016 Nov; 142():583-589. PubMed ID: 27544450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The attentional-relevance and temporal dynamics of visual-tactile crossmodal interactions differentially influence early stages of somatosensory processing.
    Popovich C; Staines WR
    Brain Behav; 2014 Mar; 4(2):247-60. PubMed ID: 24683517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring potential social influences on brain potentials during anticipation of tactile stimulation.
    Shen G; Saby JN; Drew AR; Marshall PJ
    Brain Res; 2017 Mar; 1659():8-18. PubMed ID: 28111163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modality-specific sensory readiness for upcoming events revealed by slow cortical potentials.
    Bianco V; Perri RL; Berchicci M; Quinzi F; Spinelli D; Di Russo F
    Brain Struct Funct; 2020 Jan; 225(1):149-159. PubMed ID: 31784812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of stimulus intensity and auditory white noise on human somatosensory cognitive processing: a study using event-related potentials.
    Mizukami H; Kakigi R; Nakata H
    Exp Brain Res; 2019 Feb; 237(2):521-530. PubMed ID: 30474688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in the somatosensory N250 and P300 by the variation of reaction time.
    Kida T; Nishihira Y; Hatta A; Wasaka T; Nakata H; Sakamoto M; Nakajima T
    Eur J Appl Physiol; 2003 May; 89(3-4):326-30. PubMed ID: 12736841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viewing the body modulates neural mechanisms underlying sustained spatial attention in touch.
    Sambo CF; Gillmeister H; Forster B
    Eur J Neurosci; 2009 Jul; 30(1):143-50. PubMed ID: 19519638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatio-temporal measures of electrophysiological correlates for behavioral multisensory enhancement during visual, auditory and somatosensory stimulation: A behavioral and ERP study.
    Wang W; Hu L; Cui H; Xie X; Hu Y
    Neurosci Bull; 2013 Dec; 29(6):715-24. PubMed ID: 24293020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.