These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 29572743)
1. Comparing ordinary kriging and inverse distance weighting for soil as pollution in Beijing. Qiao P; Lei M; Yang S; Yang J; Guo G; Zhou X Environ Sci Pollut Res Int; 2018 Jun; 25(16):15597-15608. PubMed ID: 29572743 [TBL] [Abstract][Full Text] [Related]
2. [Spatial Interpolation Methods and Pollution Assessment of Heavy Metals of Soil in Typical Areas]. Ma HH; Yu T; Yang ZF; Hou QY; Zeng QL; Wang R Huan Jing Ke Xue; 2018 Oct; 39(10):4684-4693. PubMed ID: 30229617 [TBL] [Abstract][Full Text] [Related]
3. Effectiveness of predicting spatial contaminant distributions at industrial sites using partitioned interpolation method. Qiao P; Yang S; Wei W; Li P; Cheng Y; Liang S; Lei M; Chen T Environ Geochem Health; 2021 Jan; 43(1):23-36. PubMed ID: 32696201 [TBL] [Abstract][Full Text] [Related]
4. [Comparison of various spatial interpolation methods for non-stationary regional soil mercury content]. Hu KL; Li BG; Lu YZ; Zhang FR Huan Jing Ke Xue; 2004 May; 25(3):132-7. PubMed ID: 15327270 [TBL] [Abstract][Full Text] [Related]
5. Spatial distribution prediction of soil As in a large-scale arsenic slag contaminated site based on an integrated model and multi-source environmental data. Liu G; Zhou X; Li Q; Shi Y; Guo G; Zhao L; Wang J; Su Y; Zhang C Environ Pollut; 2020 Dec; 267():115631. PubMed ID: 33254608 [TBL] [Abstract][Full Text] [Related]
6. [Spatial distribution prediction of surface soil Pb in a battery contaminated site]. Liu G; Niu JJ; Zhang C; Zhao X; Guo GL Huan Jing Ke Xue; 2014 Dec; 35(12):4712-9. PubMed ID: 25826945 [TBL] [Abstract][Full Text] [Related]
7. Assessment of Ordinary Kriging and Inverse Distance Weighting Methods for Modeling Chromium and Cadmium Soil Pollution in E-Waste Sites in Douala, Cameroon. Ouabo RE; Sangodoyin AY; Ogundiran MB J Health Pollut; 2020 Jun; 10(26):200605. PubMed ID: 32509406 [TBL] [Abstract][Full Text] [Related]
8. Comparison of common spatial interpolation methods for analyzing pollutant spatial distributions at contaminated sites. Qiao P; Li P; Cheng Y; Wei W; Yang S; Lei M; Chen T Environ Geochem Health; 2019 Dec; 41(6):2709-2730. PubMed ID: 31144251 [TBL] [Abstract][Full Text] [Related]
9. Comparison of the common spatial interpolation methods used to analyze potentially toxic elements surrounding mining regions. Ding Q; Wang Y; Zhuang D J Environ Manage; 2018 Apr; 212():23-31. PubMed ID: 29427938 [TBL] [Abstract][Full Text] [Related]
10. Arsenic Distribution Assessment in a Residential Area Polluted with Mining Residues. Manjarrez-Domínguez CB; Prieto-Amparán JA; Valles-Aragón MC; Delgado-Caballero MDR; Alarcón-Herrera MT; Nevarez-Rodríguez MC; Vázquez-Quintero G; Berzoza-Gaytan CA Int J Environ Res Public Health; 2019 Jan; 16(3):. PubMed ID: 30699962 [TBL] [Abstract][Full Text] [Related]
11. Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: accuracy and uncertainty analysis. Xie Y; Chen TB; Lei M; Yang J; Guo QJ; Song B; Zhou XY Chemosphere; 2011 Jan; 82(3):468-76. PubMed ID: 20970158 [TBL] [Abstract][Full Text] [Related]
12. Comparison Study on the Estimation of the Spatial Distribution of Regional Soil Metal(loid)s Pollution Based on Kriging Interpolation and BP Neural Network. Jia Z; Zhou S; Su Q; Yi H; Wang J Int J Environ Res Public Health; 2017 Dec; 15(1):. PubMed ID: 29278363 [TBL] [Abstract][Full Text] [Related]
13. Improving the mapping accuracy of soil heavy metals through an adaptive multi-fidelity interpolation method. Ju L; Guo S; Ruan X; Wang Y Environ Pollut; 2023 Aug; 330():121827. PubMed ID: 37187280 [TBL] [Abstract][Full Text] [Related]
14. Comparison of different interpolation methods and sequential Gaussian simulation to estimate volumes of soil contaminated by As, Cr, Cu, PCP and dioxins/furans. Metahni S; Coudert L; Gloaguen E; Guemiza K; Mercier G; Blais JF Environ Pollut; 2019 Sep; 252(Pt A):409-419. PubMed ID: 31158669 [TBL] [Abstract][Full Text] [Related]
15. A novel interpolation method to predict soil heavy metals based on a genetic algorithm and neural network model. Yin G; Chen X; Zhu H; Chen Z; Su C; He Z; Qiu J; Wang T Sci Total Environ; 2022 Jun; 825():153948. PubMed ID: 35219652 [TBL] [Abstract][Full Text] [Related]
16. Surface modeling of soil antibiotics. Shi WJ; Yue TX; Du ZP; Wang Z; Li XW Sci Total Environ; 2016 Feb; 543(Pt A):609-619. PubMed ID: 26613514 [TBL] [Abstract][Full Text] [Related]
17. An assessment of air pollutant exposure methods in Mexico City, Mexico. Rivera-González LO; Zhang Z; Sánchez BN; Zhang K; Brown DG; Rojas-Bracho L; Osornio-Vargas A; Vadillo-Ortega F; O'Neill MS J Air Waste Manag Assoc; 2015 May; 65(5):581-91. PubMed ID: 25947316 [TBL] [Abstract][Full Text] [Related]
18. Ordinary kriging vs inverse distance weighting: spatial interpolation of the sessile community of Madagascar reef, Gulf of Mexico. Zarco-Perello S; Simões N PeerJ; 2017; 5():e4078. PubMed ID: 29204321 [TBL] [Abstract][Full Text] [Related]
19. Optimizing spatial interpolation method and sampling number for predicting cadmium distribution in the largest shallow lake of North China. Wen L; Zhang L; Bai J; Wang Y; Wei Z; Liu H Chemosphere; 2022 Dec; 309(Pt 2):136789. PubMed ID: 36223825 [TBL] [Abstract][Full Text] [Related]
20. Dataset characteristics influence the performance of different interpolation methods for soil salinity spatial mapping. Fazeli Sangani M; Namdar Khojasteh D; Owens G Environ Monit Assess; 2019 Oct; 191(11):684. PubMed ID: 31659465 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]