These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 29572878)

  • 1. Muscle contractures in patients with cerebral palsy and acquired brain injury are associated with extracellular matrix expansion, pro-inflammatory gene expression, and reduced rRNA synthesis.
    Von Walden F; Gantelius S; Liu C; Borgström H; Björk L; Gremark O; Stål P; Nader GA; PontéN E
    Muscle Nerve; 2018 Aug; 58(2):277-285. PubMed ID: 29572878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of myogenic potential and fusion capacity of muscle stem cells isolated from contractured muscle in children with cerebral palsy.
    Domenighetti AA; Mathewson MA; Pichika R; Sibley LA; Zhao L; Chambers HG; Lieber RL
    Am J Physiol Cell Physiol; 2018 Aug; 315(2):C247-C257. PubMed ID: 29694232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced satellite cell population may lead to contractures in children with cerebral palsy.
    Smith LR; Chambers HG; Lieber RL
    Dev Med Child Neurol; 2013 Mar; 55(3):264-70. PubMed ID: 23210987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are mechanically sensitive regulators involved in the function and (patho)physiology of cerebral palsy-related contractures?
    Pingel J; Suhr F
    J Muscle Res Cell Motil; 2017 Aug; 38(3-4):317-330. PubMed ID: 29190010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resident muscle stem cell myogenic characteristics in postnatal muscle growth impairments in children with cerebral palsy.
    Kahn RE; Krater T; Larson JE; Encarnacion M; Karakostas T; Patel NM; Swaroop VT; Dayanidhi S
    Am J Physiol Cell Physiol; 2023 Mar; 324(3):C614-C631. PubMed ID: 36622072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blunted hypertrophic response in aged skeletal muscle is associated with decreased ribosome biogenesis.
    Kirby TJ; Lee JD; England JH; Chaillou T; Esser KA; McCarthy JJ
    J Appl Physiol (1985); 2015 Aug; 119(4):321-7. PubMed ID: 26048973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of extracellular matrix components to the stiffness of skeletal muscle contractures in patients with cerebral palsy.
    Smith LR; Pichika R; Meza RC; Gillies AR; Baliki MN; Chambers HG; Lieber RL
    Connect Tissue Res; 2021 May; 62(3):287-298. PubMed ID: 31779492
    [No Abstract]   [Full Text] [Related]  

  • 8. Reduced satellite cell number in situ in muscular contractures from children with cerebral palsy.
    Dayanidhi S; Dykstra PB; Lyubasyuk V; McKay BR; Chambers HG; Lieber RL
    J Orthop Res; 2015 Jul; 33(7):1039-45. PubMed ID: 25732238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skeletal muscle stiffness and contracture in children with spastic cerebral palsy.
    Ranatunga KW
    J Physiol; 2011 Jun; 589(Pt 11):2665. PubMed ID: 21632528
    [No Abstract]   [Full Text] [Related]  

  • 10. Differential DNA methylation and transcriptional signatures characterize impairment of muscle stem cells in pediatric human muscle contractures after brain injury.
    Sibley LA; Broda N; Gross WR; Menezes AF; Embry RB; Swaroop VT; Chambers HG; Schipma MJ; Lieber RL; Domenighetti AA
    FASEB J; 2021 Oct; 35(10):e21928. PubMed ID: 34559924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathophysiology of muscle contractures in cerebral palsy.
    Mathewson MA; Lieber RL
    Phys Med Rehabil Clin N Am; 2015 Feb; 26(1):57-67. PubMed ID: 25479779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle architecture, growth, and biological Remodelling in cerebral palsy: a narrative review.
    Handsfield GG; Williams S; Khuu S; Lichtwark G; Stott NS
    BMC Musculoskelet Disord; 2022 Mar; 23(1):233. PubMed ID: 35272643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired Ribosome Biogenesis and Skeletal Muscle Growth in a Murine Model of Inflammatory Bowel Disease.
    Figueiredo VC; Markworth JF; Durainayagam BR; Pileggi CA; Roy NC; Barnett MP; Cameron-Smith D
    Inflamm Bowel Dis; 2016 Feb; 22(2):268-78. PubMed ID: 26588088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle contracture and passive mechanics in cerebral palsy.
    Lieber RL; Fridén J
    J Appl Physiol (1985); 2019 May; 126(5):1492-1501. PubMed ID: 30571285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene expressions in cerebral palsy subjects reveal structural and functional changes in the gastrocnemius muscle that are closely associated with passive muscle stiffness.
    Pingel J; Kampmann ML; Andersen JD; Wong C; Døssing S; Børsting C; Nielsen JB
    Cell Tissue Res; 2021 May; 384(2):513-526. PubMed ID: 33515289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hamstring contractures in children with spastic cerebral palsy result from a stiffer extracellular matrix and increased in vivo sarcomere length.
    Smith LR; Lee KS; Ward SR; Chambers HG; Lieber RL
    J Physiol; 2011 May; 589(Pt 10):2625-39. PubMed ID: 21486759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myogenic Progenitor Cells Control Extracellular Matrix Production by Fibroblasts during Skeletal Muscle Hypertrophy.
    Fry CS; Kirby TJ; Kosmac K; McCarthy JJ; Peterson CA
    Cell Stem Cell; 2017 Jan; 20(1):56-69. PubMed ID: 27840022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired muscle growth precedes development of increased stiffness of the triceps surae musculotendinous unit in children with cerebral palsy.
    Willerslev-Olsen M; Choe Lund M; Lorentzen J; Barber L; Kofoed-Hansen M; Nielsen JB
    Dev Med Child Neurol; 2018 Jul; 60(7):672-679. PubMed ID: 29573407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneity of muscle sizes in the lower limbs of children with cerebral palsy.
    Handsfield GG; Meyer CH; Abel MF; Blemker SS
    Muscle Nerve; 2016 Jun; 53(6):933-45. PubMed ID: 26565390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ACL injury reduces satellite cell abundance and promotes fibrogenic cell expansion within skeletal muscle.
    Fry CS; Johnson DL; Ireland ML; Noehren B
    J Orthop Res; 2017 Sep; 35(9):1876-1885. PubMed ID: 27935172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.