These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 29572983)

  • 61. Influence of monomer deformation on the competition between two types of σ-holes in tetrel bonds.
    Wysokiński R; Michalczyk M; Zierkiewicz W; Scheiner S
    Phys Chem Chem Phys; 2019 May; 21(20):10336-10346. PubMed ID: 31073577
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A quantum chemical perspective on the potency of electron donors and acceptors in pnicogen bonds (AS...N, P...N, N...N).
    Palanisamy D
    J Mol Model; 2019 Dec; 26(1):11. PubMed ID: 31834505
    [TBL] [Abstract][Full Text] [Related]  

  • 63. From Noncovalent Chalcogen-Chalcogen Interactions to Supramolecular Aggregates: Experiments and Calculations.
    Gleiter R; Haberhauer G; Werz DB; Rominger F; Bleiholder C
    Chem Rev; 2018 Feb; 118(4):2010-2041. PubMed ID: 29420879
    [TBL] [Abstract][Full Text] [Related]  

  • 64. σ-Hole Opposite to a Lone Pair: Unconventional Pnicogen Bonding Interactions between ZF3 (Z=N, P, As, and Sb) Compounds and Several Donors.
    Bauzá A; Mooibroek TJ; Frontera A
    Chemphyschem; 2016 Jun; 17(11):1608-14. PubMed ID: 26972801
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Noncovalent Bonds through Sigma and Pi-Hole Located on the Same Molecule. Guiding Principles and Comparisons.
    Zierkiewicz W; Michalczyk M; Scheiner S
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33804617
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The chalcogen bond in F
    Yan N; Huo S; Li X; Zeng Y; Meng L
    J Mol Model; 2019 Jan; 25(1):19. PubMed ID: 30610397
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Exploring (NH2F)2, H2FP:NFH2, and (PH2F)2 potential surfaces: hydrogen bonds or pnicogen bonds?
    Alkorta I; Sánchez-Sanz G; Elguero J; Del Bene JE
    J Phys Chem A; 2013 Jan; 117(1):183-91. PubMed ID: 23256619
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Ability of Lewis Acids with Shallow σ-Holes to Engage in Chalcogen Bonds in Different Environments.
    Wysokiński R; Zierkiewicz W; Michalczyk M; Scheiner S
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770803
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Intermolecular CH···O/N H-bonds in the biologically important pairs of natural nucleobases: a thorough quantum-chemical study.
    Brovarets' OO; Yurenko YP; Hovorun DM
    J Biomol Struct Dyn; 2014; 32(6):993-1022. PubMed ID: 23730732
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Pnicogen bonds: a theoretical study based on the Laplacian of electron density.
    Eskandari K; Mahmoodabadi N
    J Phys Chem A; 2013 Dec; 117(48):13018-24. PubMed ID: 24246034
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Unexpected chalcogen bonds in tetravalent sulfur compounds.
    Franconetti A; Quiñonero D; Frontera A; Resnati G
    Phys Chem Chem Phys; 2019 Jun; 21(21):11313-11319. PubMed ID: 31107466
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Competition between a Tetrel and Halogen Bond to a Common Lewis Acid.
    Scheiner S
    J Phys Chem A; 2021 Jan; 125(1):308-316. PubMed ID: 33351620
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Hypervalency, secondary bonding and hydrogen bonding: siblings under the skin.
    Crabtree RH
    Chem Soc Rev; 2017 Mar; 46(6):1720-1729. PubMed ID: 28240328
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Novel pnicogen bonding interactions with silylene as an electron donor: covalency, unusual substituent effects and new mechanisms.
    Zhuo H; Li Q
    Phys Chem Chem Phys; 2015 Apr; 17(14):9153-60. PubMed ID: 25758936
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Ternary Complexes Stabilized by Chalcogen and Alkaline-Earth Bonds: Crucial Role of Cooperativity and Secondary Noncovalent Interactions.
    Mó O; Montero-Campillo MM; Alkorta I; Elguero J; Yáñez M
    Chemistry; 2019 Sep; 25(50):11688-11695. PubMed ID: 31157470
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Theoretical and conceptual DFT study of pnicogen- and halogen-bonded complexes of PH
    Wu J; Yan H; Zhong A; Chen H; Jin Y; Dai G
    J Mol Model; 2019 Jan; 25(1):28. PubMed ID: 30612194
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Magnitude and origin of the attraction and directionality of the halogen bonds of the complexes of C6F5X and C6H5X (X = I, Br, Cl and F) with pyridine.
    Tsuzuki S; Wakisaka A; Ono T; Sonoda T
    Chemistry; 2012 Jan; 18(3):951-60. PubMed ID: 22189874
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Characterization of chalcogen bonding interactions via an in-depth conceptual quantum chemical analysis.
    De Vleeschouwer F; Denayer M; Pinter B; Geerlings P; De Proft F
    J Comput Chem; 2018 Apr; 39(10):557-572. PubMed ID: 29125203
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Chalcogen Bond Involving Zinc(II)/Cadmium(II) Carbonate and Its Enhancement by Spodium Bond.
    Liu N; Xie X; Li Q
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770852
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Chalcogen 'like-like' Interactions Involving Trisulphide and Triselenide Compounds: A Combined CSD and Ab Initio Study.
    Bauzá A; Frontera A
    Molecules; 2018 Mar; 23(3):. PubMed ID: 29562728
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.